Рівняння нерозривності

Матеріал з Вікі-знання або навчання 2.0 в ТНТУ
Перейти до: навігація, пошук

В гідрогазодинаміці в багатьох випадках можна знехтувати стисливістю рідин і газів. Тому використовують єдиний підхід до вивчення їх поведінки, користуючись єдиним поняттям нестисливої рідини - суцільного середовища з однаковою в усіх точках густиною, яка не змінюється з часом. Це своєрідна модель ідеальної рідини, в якій не враховується наявне в рідині внутрішне тертя.


Елементарний об`єм в 3D

Спираючись на закон збереження маси, отримаємо рівняння нерозривності, яке замикає систему рівнянь Ейлера.
Припустимо, що рідина рухається без виникнення пустот. Виділимо елементарний об’єм.

LaTeX: p\cdot V\cdot dx\cdot dy - маса рідини, яка витікає з грань LaTeX: \textbf{\textit{xz}}.

LaTeX: [\rho V+dy\cdot \frac{\partial(pV)}{dy}]dx\cdot dz - маса рідини, яка витікає з LaTeX: \textbf{\textit{xz}}:

LaTeX: \frac{\partial(\rho V)}{dy} - приріст LaTeX: \textbf{\textit{pV}}


Зміст

Рівняння нерозривності стаціонарного руху рідини в гідравлічній формі

Розглянемо спочатку елементарну струминку . Відповідно до закону збереження маси можна стверджувати, що масова витрата через усякий живий переріз елементарної струминки є величиною сталою, тобто dm=uρdω=const. Цей висновок випливає з властивостей елементарної струминки: у протилежному випадку масова витрата повинна зростати або зменшуватись необмежено, а це суперечить умові стаціонарного руху рідини. Отже, для будь-яких живих перерізів стисливої рідини або газу в елементарній струминці справедливою є умова

LaTeX: \rho _{1}u_{1}dw_{1}=\rho _{2}u_{2}dw_{2}=...=\rho _{n}u_{n}dw_{n}=const  (9)

Рівняння (9) називають рівнянням нерозривності або суцільності руху для елементарної струминки стисливої рідини або газу. Якщо ρ=const, тобто рідина нестислива, то рівняння нерозривності руху (9) можна записати у вигляді


LaTeX: \rho _{2}u_{2}dw_{2}=...=\rho _{n}u_{n}dw_{n}=const (10)

Цей вираз відображає властивість нестисливої рідини, тому його інколи називають рівнянням нестисливості рідини для елементарної струминки. З (10) випливає, що площа живого перерізу елементарної струминки не може дорівнювати нулю, оскільки в такому разі швидкість у цьому перерізі струминки прямуватиме до нескінченості, що фізично неможливе. Тому елементарна струминка в потоці не може обриватися в середині рідини або закінчуватися вістрям.


Аналогічно викладеному вище можна одержати рівняння нерозривності руху для реального потоку якщо просумувати витрати в елементарних струминках в межах кожного живого перерізу окремо. У результаті для стисливої рідини або газу вздовж потоку маємо


LaTeX: \rho _{1}V_{1}w_{1}=\rho _{2}V_{2}w_{2}=...=\rho _{n}V_{n}w_{n}=const         (11)

де Vi – середні швидкості у живих перерізах. При стаціонарному русі рідини, а у деяких випадках і газів (при невеликих швидкостях), зміною питомої маси можна знехтувати, тобто прийняти ρ=const. Тоді рівняння (11) можна переписати у вигляді

LaTeX: V_{1}w_{1}=V_{2}w_{2}=...=V_{n}w_{n}=const (12)

Можна сказати, що рівняння (12) є аналітичним записом закону збереження маси в гідравлічній формі для потоку нестисливої рідини. Це і є рівняння нерозривності для потоку рідини, котре формулюється так: витрата рідини через довільний переріз потоку в усталеному русі є величиною сталою. З рівняння (12) для двох перерізів можна записати

LaTeX: V_{1}V_{2}/=w_{2}w_{1} (13)

Тобто середні швидкості потоку обернено пропорційні площам відповідних живих перерізів.


Загальний диференціальний вигляд

Вздовж осі LaTeX: \textbf{\textit{Oy}} маса рідини змінилася на величину:

LaTeX: \begin{cases} \frac{\partial(\rho V)}{dy}dx\cdot dy\cdot dz\\ \frac{\partial(pW)}{dz}dx\cdot dy\cdot dz\\ \frac{\partial(\rho U)}{dx}dx\cdot dy\cdot dz\end{cases}

Приріст маси:

LaTeX: [\frac{\partial(\rho U)}{dx}+\frac{\partial(pV)}{dy}+\frac{\partial(\rho W)}{dz}]dx\cdot dy\cdot dz

З іншого боку, приріст маси може отриматись за рахунок змінної густини

LaTeX: dm=-\frac{\partial \rho }{\partial t}dx\cdot dy\cdot dz

Кінцева формула

Отже, можна отримати рівняння нерозривності у одному з виглядів

LaTeX: \frac{\partial(\rho U)}{dx}+\frac{\partial(\rho V)}{dy}+\frac{\partial(\rho W)}{dz}=-\frac{\partial \rho }{\partial t}

LaTeX: \frac{\partial \rho }{\partial t} + div  \rho V за умови, що LaTeX: p\neq const.

Припустимо LaTeX: p=const, тоді рівняння нерозривності

LaTeX: div \vec{V}=0

LaTeX: \frac{\partial U}{\partial x}+\frac{\partial V}{\partial y}+\frac{\partial W}{\partial z}=0

Це рівняння доповнює систему рівнянь Ейлера до замкнутої системи чотирьох рівнянь відносно чотирьох невідомих функцій.

Література

Милн-Томсон Л. М. «Теоретическая гидродинамика». пер. з англ., М., 1964.

Б.Ф Левицький\Н.П.Лещій 1994р.

Особисті інструменти
реклама