Неньютонівські рідини і їх класифікація

Неньютонівська рідина – модель рідини, що являє собою суцільне рідке тіло, для якого дотичні напруження внутрішнього тертя, спричиненого відносним проковзуванням (зсувом) шарів рідини описуються нелінійною залежністю від градієнта швидкості у напрямі, перпендикулярному до напрямку проковзування. На відміну від ньютонівських рідин, коли динамічний коефіцієнт в'язкості є константою при заданій температурі і тиску, особливість неньютонівських рідин полягає у залежності параметра в'язкості від градієнту швидкості.

Як синонім до терміну «неньютонівська рідина» вживається, також, термін «аномальна рідина».


Закон в'язкого тертя Ньютона

Для ньютонівських рідин закон в’язкого тертя Ньютона матиме вигляд

                                [math]\tau\ = \mu\(\frac{du}{dn})[/math], 

де [math]\tau\[/math]— напруження зсуву, що виникають між двома паралельними шарами, що лежать у напрямку потоку;

[math]du/dn[/math] — градієнт швидкості, тобто зміна швидкості на одиницю довжини у перпендикулярному до потоку напрямку (швидкісить зсуву);

μ — коефіцієнт пропорційності, який є фізичним параметром і називається динамічною в'язкістю (як показують дослідження μ залежить від природи рідини або газу, а також від температури).

Для неньютонівських рідин вищенаведений закон не підходить, тобто крива течії не є лінійною. Тому в більш загальному вигляді рівняння слід записати так:

                                 [math]f(\tau\) = \frac{du}{dn}[/math]

Очевидно, що для ньютонівських рідин [math]f(\tau\) = \frac{ \tau\ }{ \mu\ } [/math], а для неньютонівських — функція [math]f(\tau\)[/math] може мати різний вигляд залежно від роду рідини.


Класифікація рідин за видом залежності дотичних напружень від градієгту швидкості.


Класифікація неньютонівських рідин

Якщо [math]f(\tau\)= \frac{\tau\ - (\tau_0\)}{\eta\ }[/math], де [math]\tau_0\[/math]— граничне напруження зсуву, а [math]\eta\[/math]—пластична в’язкість, то рідина являє собою бінгамовський пластик.

Коли ж [math]f(\tau\)= \tau^ (\frac{ \1\ }{ \ n \ } )\ / k [/math] , де n і k — сталі для даної рідини, то при n<1 маємо так звану псевдопластичну рідину, а при n>1 — дилатантну рідину.

Стала n характеризує ступінь неньютонівської поведінки матеріалу, а k — міру консистенції рідини.


Бінгамовська рідина

В статичних умовах бінгамовська рідина веде себе як твердий матеріал, а при силовому впливі починає текти.

Прикладами бінгамовської рідини можуть бути:

  • шлами
  • бурові розчини
  • масляні фарби
  • стічні води
  • різні емульсії та інші рідини

    Псевдопластичні рідини

    Псевдопластичні рідини не виявляють меж текучості, і крива течії в них показує, що відношення напруження зсуву і градієнта швидкості, яке в даному випадку характеризує уявну, або ефективну, в’язкість, поступово знижується зі зростанням градієнта швидкості.

    Приклади псевдопластичних рідин:

  • розчини каучука
  • розчини мастила
  • розчини полімерів
  • фармацевтичні розчини
  • різні харчові продукти
  • біологічні рідини тощо.

    Дилатантні рідини

    Стаціонарно реологічно аномальна рідина, в'язкість якої із зростанням градієнту швидкості зростає.

    Приклади дилатантних рідин:

  • висококонцентровані водні суспензії порошків двоокису титану, заліза, слюди
  • системи пісок/вода
  • гідрозоль крохмалю
  • солодкі суміші
  • водні розчини гуміарабіку та ін.


    Крім перелічених вище існують й інші типи неньютонівськнх рідин (в’язко- і пружнопластичні, еластичні тощо). Для багатьох з них зв’язок між напруженням і градієнтом швидкості залежить також від часу дії напруження і передісторії рідини. Значення їх ефективної в’язкості залежить не лише від швидкості зсуву, але й його тривалості.


    Література

  • Левицький Б.Ф., Лещій Н.П. Гідравліка.Загальний курс - Львів: Cвіт,1994.-264с.
  • Константінов Ю.М., Гіжа О.О. Технічна механіка рідини і газу: Підручник.- К.: Вища школа, 2002.-277с
  • Астарита Дж., Марруччи Дж., Основы гидромеханики неньютоновских жидкостей, пер. с англ., М., 1978