Попередня обробка експериментальних даних

Blue check.png Дана стаття являється неперевіреним навчальним завданням.
Студент: Росинець Наталія Андріївна
Викладач: Назаревич О.Б.
Термін до: 28 лютого 2010

До вказаного терміну стаття не повинна редагуватися іншими учасниками проекту. Після завершення терміну виконання будь-який учасник може вільно редагувати дану статтю і витерти дане попередження, що вводиться за допомогою шаблону.



Попередня обробка експериментальних даних. Критерії відсіювання завідомо помилкових даних

 http://elartu.tstu.edu.ua/handle/123456789/380 Презентація доповіді (університетський репозиторій).

Зміст та завдання попередньої обробки експериментальних даних

Результати вимірювань – це випадкові величини, тобто в ході експерименту інформація спотворена перешкодами, і за одних і тих же умов можна отримати різні дані.
Зміст попередньої обробки даних полягає у відсіюванні грубих похибок і оцінці достовірності результатів вимірювань. Попередня обробка результатів вимірювань необхідна для того, щоб надалі, при побудові функцій відгуку, з найбільшою ефективністю використовувати статистичні методи і коректно аналізувати отримані результати.
Завданням попередньої обробки даних є перевірка відповідності результатів вимірювання нормальному закону і визначення параметрів цього розподілу. Якщо відгук суперечить нормальному розподілу, то слід визначити, якому закону розподілу підлягають дослідні дані або, якщо це можливо, перетворити досліджуваний розподіл до нормального вигляду.

Методи обробки експериментальних даних

Метод найменших квадратів

Для обробки експериментальних даних найчастіше на практиці використовують метод найменших квадратів - один з методів теорії помилок, що використовується для оцінки невідомих величин за наслідками вимірювань, що містить випадкові помилки (спричиняються різного роду випадковими причинами, які діють при кожному з окремих вимірювань непередбаченим чином).
Метод найменших квадратів запропонував К. Гаус (1794—95) і А. Лежандром (1805—06). Строге математичне обґрунтовування методу було дано А. А. Марковим (старшим) і А. Н. Колмогоровим. Нині цей метод є одним з найважливіших розділів математичної статистики і широко використовується для статистичних висновків в різних областях науки і техніки.
Суть методу найменших квадратів (по Гаусу) полягає в припущені, що «збиток» від заміни точного (невідомого) значення фізичної величини m її наближеним значенням X, обчисленим за наслідками спостережень, пропорційний квадрату помилки: (X - m)2. Оптимальною оцінкою визнають величину X , позбавлену систематичної помилки, для якої середнє значення «збитку» мінімальне. Задачу пошуку оптимальної оцінки звужують і як Х вибирають лінійну функцію від результатів спостережень, позбавлену систематичної помилки, і таку, для якої середнє значення «збитку» мінімальне в класі всіх лінійних функцій. Якщо випадкові помилки спостережень мають нормальний розподіл і оцінювана величина m залежить від середніх значень результатів спостережень лінійно, то рішення цієї задачі одночасно буде і рішенням загальної задачі. Оцінка X, обчислена згідно методу найменших квадратів — найвірогідніше значення невідомого параметра m.
Метод найменших квадратів дає найбільш бажаний результат тоді, коли випадкова помилка має порівняно невелику величину. В іншому разі необхідним є проведення попередньої обробки експериментальних даних, яка полягає в наступному: вихідні записи випадкових величин згладжуються певним способом, що дає змогу виявити основну тенденцію у їхній зміні.

Метод виключення перешкод

Метод виключення перешкод полягає у проведенні на око середньої лінії, яка враховує тільки основні коливання змінної. Інформація, що надалі буде зніматись із цієї середньої лінії, при математичній обробці даних буде використовуватись як вихідна.
Значення випадкової величини, що не збігаються із середньою лінією, прямо не впливатимуть на подальші висновки.

Метод оновлюваної середньої

Метод оновлюваної середньої полягає у використанні рекурентної формули для обчислення середнього арифметичного . Якщо випадкова величина х надходить у вигляді дискретних вимірів і для (N - 1) - го виміру обчислено середнє значення , то поява нового виміру змінює попереднє середнє значення на величину

[math]\frac{1}{N}({{x}_{N}}-{{x}_{N-1}})[/math]


При згладжуванні цим методом у кожній точці на часовій осі виміряне значення замінюється на середнє, розраховане на даний момент часу.
Послідовність обчислених за рекурентною формулою середніх значень є позбавленим від перешкод рядом вимірів змінної х, який використовується при подальшій обробці.

Приклад


Розглянемо згладжування методом оновлюваної середньої наступного ряду вимірювань величини х:

3.4; 3.1; 5.4; 2.7; 2.9; 3.3; 2.7; 4.3; 3.2; 2.0.

Перше значення збігається з х1. Друге значення обчислюється за рекурентною формулою:

[math]{{\bar{x}}_{N}}={{x}_{N-1}}+\frac{1}{N}({{x}_{N}}-{{x}_{N-1}})[/math]

Отже:[math]{{\bar{x}}_{2}}=3.4+\frac{1}{2}(3.1-3.4)=3.25[/math];[math]{{\bar{x}}_{3}}=3.25+\frac{1}{3}(5.4-3.25)=3.96[/math]; [math]{{\bar{x}}_{4}}=3.65[/math];[math]{{\bar{x}}_{5}}=3.50[/math];[math]{{\bar{x}}_{6}}=3.46[/math];[math]{{\bar{x}}_{7}}=3.35[/math];[math]{{\bar{x}}_{8}}=3.47[/math];[math]{{\bar{x}}_{9}}=3.44[/math];[math]{{\bar{x}}_{10}}=3.30[/math].
Результати згладжування експериментальних даних зображено на рисунку:

Результати згладжування експериментальних даних


Метод ковзної середньої

Метод ковзної середньої полягає в послідовному усередненні на деякому інтервалі [math]{{\tau }_{y}}[/math] значень вимірюваної величини х. Рухаючи [math]{{\tau }_{y}}[/math] уздовж осі часу для всіх точок [math]{{\tau }_{i}}[/math], що попали в нього, відповідні значення [math]{{x}_{i}}[/math] замінимо середніми значеннями; віднесемо ці значення до середини відповідного інтервалу. Операція згладжування виконується за формулою:

[math]{{\bar{x}}_{i+\frac{l}{2}}}=\frac{1}{l+1}\sum\limits_{k=0}^{l}{{{x}_{i=k}};k=0,1,...,l}[/math]

де і – номер інтервалу; (l+1) – число вимірювань у і-тому інтервалі; [math](i+\frac{l}{2})[/math] - номер замінюваного вимірювання.
Якщо попередня оцінка виконана невдало і після згладжування залишаються перешкоди, утворені дані знову можна піддати усередненню і робити це багаторазово, до бажаного результату.


Греко–латинські квадрати

Планування за латинським квадратом дозволяє ввести в дослідження три фактора. Для чотирьох факторів хороші властивості має план експерименту по схемі греко-латинського квадрату. Число рівнів для всіх факторів повинно бути однакове.

Греко-латинський квадрат 3х3
Рис.2 - Греко-латинський квадрат 3х3
Греко-латинський квадрат 5х5
Рис.3 - Греко-латинський квадрат 5х5


В греко-латинських квадратах є [math]{{n}^{2}}[/math] різких комбінацій рівнів факторів замість [math]{{n}^{4}}[/math] комбінацій повного чотирифакторного експерименту. Тому греко-латинський квадрат являє собою [math]1/{{n}^{2}}[/math] репліку від ПФЕ. Дисперсійний аналіз греко-латинського квадрату проводять так само, як і аналіз звичайного латинського квадрата, з врахуванням четвертого фактора D. Використання греко-латинських та гіпер-греко-латинських квадратів в якості планів експерименту одночасно дає економію в числі дослідів та приводить до спрощення обчислень.

Латинські куби

Повному факторному експерименту для трьох факторів [math]{{n}^{3}}[/math] (n>2) відповідає кубічне розміщення з n елементів, що містить n3 позицій. Трьом ребрам кубу відповідають фактори А, В, С з рівнями 0, 1, 2, …, n-1. Коли ввести в план четвертий фактор D і рівні цього фактору (0, 1, 2, …, n-1) розмістити у відповідних до дослідів точках кубічного розміщення, то одержимо латинський куб розміру n першого порядку [1]. Планування експерименту по латинському кубу першого порядку дозволяє включити в розгляд чотири фактори (A, B, C i D). Відмінність від греко-латинського квадрату, котрий також дає можливість вивчити вплив чотирьох факторів є в тому, що в латинському кубі три фактори (A, B, C) рахуються головними і один фактор (D) складає елімінуюче групування, а в греко-латинському квадраті головними рахуються два фактори А та В, а C i D складають подвійне елімінуюче групування. Число дослідів в кубі в n раз більше, ніж в греко-латинському квадраті. Два латинських куба розміром n першого порядку ортогональні, коли при накладанні їх один на одного кожний елемент одного кубу зустрічається з кожним елементом другого кубу n разів. Два таких ортогональних куба, накладених один на одного, представляють греко-латинський куб розміру n першого порядку. Планування по схемі греко-латинського кубу дозволяє ввести в експеримент п’ятий фактор.

Перелік використаних джерел

  1. Дисперсійний аналіз // режим доступу: http://lp.edu.ua/fileadmin/ICCT/top/pub/Chaykivskyy/mm/da.pdf (станом на 14.02.10)
  2. В. О. Аністратенко, В. Г. Федоров. Математичне планування експериментів в АПК. Київ: Вища школа, - 1993, - 375 с.