Відмінності між версіями «Ядерне згладжуваня»

(Последовательность весов)
(Функция ядра)
Рядок 29: Рядок 29:
  
 
=== Функция ядра ===
 
=== Функция ядра ===
Функция <tex>\hat{f}_{h_m}(x)</tex> является ''ядерной оценкой плотности Розенблата — Парзена'' (Rosenblatt, 1956; Parzen, 1962) для (маргинальной) плотности  
+
Функция <math>\hat{f}_{h_m}(x)</math> является ''ядерной оценкой плотности Розенблата — Парзена'' (Rosenblatt, 1956; Parzen, 1962) для (маргинальной) плотности  
переменной <tex>x</tex>. Данный вид ядерных весов <tex>W_{mi}(x)</tex> был предложен в работах (Nadaraya, 1964) и (Watson, 1964). Как следствие, оценка  
+
переменной <math>x</math>. Данный вид ядерных весов <math>W_{mi}(x)</math> был предложен в работах (Nadaraya, 1964) и (Watson, 1964). Как следствие, оценка  
ожидаемой величины восстанавливаемой зависимости <tex>E(y\|x)</tex>:
+
ожидаемой величины восстанавливаемой зависимости <math>E(y\|x)</math>:
::<tex>\hat{m}_h(x)=\frac{\frac1m\textstyle\sum\limits_{i=1}^m K_{h_m}(x-X_i)Y_i}{\frac1m\textstyle\sum\limits_{i=1}^m K_{h_m}(x-X_i)}</tex>
+
::<math>\hat{m}_h(x)=\frac{\frac1m\textstyle\sum\limits_{i=1}^m K_{h_m}(x-X_i)Y_i}{\frac1m\textstyle\sum\limits_{i=1}^m K_{h_m}(x-X_i)}</math>
 
часто называют оценкой ''Надарая—Ватсона''.  
 
часто называют оценкой ''Надарая—Ватсона''.  
Ширина окна определяет, насколько быстро убывают веса <tex>W_{mi}(x)</tex> по мере удаления объектов <tex>x_i</tex> от <tex>x</tex>.  
+
Ширина окна определяет, насколько быстро убывают веса <math>W_{mi}(x)</math> по мере удаления объектов <math>x_i</math> от <math>x</math>.  
Характер убывания определяется видом ядра <tex>K</tex>.  
+
Характер убывания определяется видом ядра <math>K</math>.  
Нормализация весов <tex>\hat{f}_{h_m}(x)</tex> гарантирует, что сумма весов равна единице.  
+
Нормализация весов <math>\hat{f}_{h_m}(x)</math> гарантирует, что сумма весов равна единице.  
  
'''Замечание'''. При ряде условий имеет место сходимость по вероятности данной оценки к <tex>E(y|x)</tex>.
+
'''Замечание'''. При ряде условий имеет место сходимость по вероятности данной оценки к <math>E(y|x)</math>.
  
 
=== Пример функции ядра ===
 
=== Пример функции ядра ===

Версія за 17:25, 13 березня 2012

Ядерное сглаживание - один из простейших видов непараметрической регрессии.

Постановка задачи

Решается задача восстановления регрессии. Задано пространство объектов [math]X[/math] и множество возможных

ответов [math]Y=R[/math]. Существует неизвестная целевая зависимость [math]y^*: X \rightarrow Y[/math], значения которой известны только на объектах обучающей выборки [math]X^m={(x_i, y_i)}_{i=1}^m[/math]. Требуется построить алгоритм [math]a: X \rightarrow Y[/math], аппроксимирующий целевую зависимость [math]y^*[/math].

Принцип

Принцип, используйщий идейно простой подход к представлению последовательности весов [math]\{ W_{mi}(x) \}_{i=1}^m[/math] состоит в описании формы весовой функции [math]W_{mi}(x)[/math] посредством функции плотности со скалярным параметром, который регулирует размер и форму весов около х. Эту функцию формы принято называть ядром [math]K[/math].

Полученные таким образом веса далее используются для представления величины [math]a(x)[/math] в виде взвешенной суммы значений [math]y_i[/math] обучающей выборки.

Описание метода

Определение ядра

Ядро — это непрерывная ограниченная симметричная вещественная функция [math]K[/math] с единичным интегралом

[math]\int K(u)du=1[/math]

Последовательность весов

Последовательность весов для ядерных оценок (для одномерного [math]x[/math]) определяется как ::[math]W_{mi}(x)=\frac{K_{h_m}(x-X_i)}{\hat{f}_{h_m}(x)}[/math], где

[math]\hat{f}_{h_m}(x)=\frac1m \sum_{i=1}^m K_{h_m}(x-X_i)[/math],

a

[math]K_{h_m}(u)=\frac{1}{h_m} K\(\frac{u}{h_m}\)[/math]

представляет собой ядро с параметром [math]h_m[/math]. Этот параметр принято называть шириной окна. Подчеркнув зависимость [math]h\ =\ h_m[/math] от объема выборки [math]m[/math], условимся сокращенно обозначать последовательность весов [math]W_{mi}(x)[/math].

Функция ядра

Функция [math]\hat{f}_{h_m}(x)[/math] является ядерной оценкой плотности Розенблата — Парзена (Rosenblatt, 1956; Parzen, 1962) для (маргинальной) плотности переменной [math]x[/math]. Данный вид ядерных весов [math]W_{mi}(x)[/math] был предложен в работах (Nadaraya, 1964) и (Watson, 1964). Как следствие, оценка ожидаемой величины восстанавливаемой зависимости [math]E(y\|x)[/math]:

[math]\hat{m}_h(x)=\frac{\frac1m\textstyle\sum\limits_{i=1}^m K_{h_m}(x-X_i)Y_i}{\frac1m\textstyle\sum\limits_{i=1}^m K_{h_m}(x-X_i)}[/math]

часто называют оценкой Надарая—Ватсона. Ширина окна определяет, насколько быстро убывают веса [math]W_{mi}(x)[/math] по мере удаления объектов [math]x_i[/math] от [math]x[/math]. Характер убывания определяется видом ядра [math]K[/math]. Нормализация весов [math]\hat{f}_{h_m}(x)[/math] гарантирует, что сумма весов равна единице.

Замечание. При ряде условий имеет место сходимость по вероятности данной оценки к [math]E(y|x)[/math].

Пример функции ядра

Примеры различных функций ядра.

На практике используется несколько видов ядерных функций. Чаще всего используется квартическая ядерная функция

<tex>K(u)=(15/16)(1-u^2)^2I(\| u \| \le 1)</tex>.

Также используется ядро Епанечникова, обладающее некоторыми свойствами оптимальности [Хардле В п4.5]; это функция параболического типа (Epanechnikov, 1969; Bartlett, 1963):

<tex>K(u)=0.75(1-u^2)I(\| u \| \le 1)</tex>.

Другими примерами являются ядро Гаусса,

<tex>K(u)=(2\pi)^{-1/2} \exp(-u^2/2)</tex>,

треугольное ядро

<tex>K(u)=(1-\|u\|)I(\| u \| \le 1)</tex>,

и прямоугольное ядро

<tex>K(u)=(1/2)I(\| u \| \le 1)</tex>.

Замечание. Точность восстанавливаемой зависимости мало зависит от выбора ядра. Ядро определяет степень гладкости функции <tex>a(x)</tex>.

Зависимость от ширины окна

Выбор окна решающим образом влияет на точность восстанавливаемой зависимости. При чересчур малых значениях <tex>h</tex> кривая <tex>a(x)</tex> стремится пройти через каждую точку выборки, остро реагируя на шумы и претерпевая резкие скачки, поскольку в этом случае оценка опирается только на небольшое число наблюдений из узкой окрестности точки <tex>x</tex>. Наоборот, если ширина окна велика, функция чрезмерно сглаживается и в пределе при <tex> h \rightarrow \infty</tex> вырождается в константу -- усреднённое значение величин <tex> y_i</tex>. В этом случае сглаженная функция не даёт возможности определить характерные особенности искомой зависимости <tex> y^*(x)</tex>.

Литература

  1. Шаблон:Книга
  2. Шаблон:Книга
  3. Шаблон:Книга

См. также