Огляд видів експертних систем та їх класифікація

{{{img}}}
Імя Олена
Прізвище Лунак
По-батькові Михайлівна
Факультет ФІС
Група СНм-51
Залікова книжка СНм-11-235


Репозиторія
Презентація доповіді на тему Огляд видів експертних систем та їх класифікація
є розміщеною в Репозиторії.


Експертні системи - це методологія адаптації алгоритму успішних рішень одної сфери науково-практичної діяльності в іншу. З поширенням комп’ютерних технологій це тотожна (подібна, основана на оптимізуючому алгоритмі) інтелектуальна комп'ютерна програма, що містить знання та аналітичні здібності одного або кількох експертів у відношенні до деякої галузі застосування і здатна робити логічні висновки на основі цих знань, тим самим забезпечуючи вирішення специфічних завдань (консультування, навчання, діагностика, тестування, проектування тощо) без присутності експерта (спеціаліста в конкретній проблемній галузі).

Експертні системи - це клас комп’ютерних програм, які пропонують рекомендації, проводять аналіз, виконують класифікацію, дають консультації і ставлять діагноз. Вони орієнтовані на розв’язування задач, вирішення яких вимагає проведення експертизи людиною-спеціалістом. На відміну від програм, що використовують процедурний аналіз, експертні системи розв’язують проблеми у вузькій предметній площині (конкретній ділянці експертизи) на основі логічних міркувань. Такі системи часто можуть знайти розв’язок задач, які неструктуровані і неточно визначені. Вони через використання евристик компенсують відсутність структурованості, що корисно в ситуаціях, коли недостатня кількість необхідних даних або часу виключає можливість проведення повного аналізу.
Основою експертної системи є сукупність знань, яка структурується для спрощення процесу прийняття рішення. Для спеціалістів в галузі штучного інтелекту термін “знання“ означає інформацію, що потрібна програмі для того, щоб вона вела себе інтелектуально. Ця інформація приймає форму фактів або правил. Факти і правила не завжди правдиві або неправильні, інколи існує деяка міра неправильності в достовірності факту або точності правила. Якщо сумнів виражається явно, то він називається коефіцієнтом впевненості.

Знання

Основою експертних систем є знання.
Знання - це цілісна і систематизована сукупність понять про закономірності природи, суспільства і мислення, нагромаджена людством в процесі активної перетворюючої діяльності і спрямована на подальше пізнання і зміни об’єктивного світу. Знання з предметної ділянки називається базою знань. База знань експертної системи містить факти (дані) і правила (способи подання знань). Механізм висновку містить: інтерпретатор, який визначає, як застосовувати правила для виводу нових знань, та диспетчерів, що встановлюють порядок застосування цих правил.

Експертна система містить три типи знань:

  1. Структуровані знання про предметну ділянку - після того, як ці знання виявлені, вони не змінюються;
  2. Структуровані динамічні знання - змінні знання з предметної ділянки, які обновляються по мірі виявлення нової інформації;
  3. Робочі знання, які використовуються для розв’язування конкретної задачі або проведення консультації.

Всі перераховані знання зберігаються в базі знань. Для її побудови потрібно провести опит спеціалістів, які є експертами в конкретній предметній ділянці, а потім систематизувати, організувати та індексувати отриману інформацію для простоти її використання.

Склад експертної системи

Повністю оформлена ЕС включає 4 важливі компоненти:

  1. База знань;
  2. Машина висновку;
  3. Інтерпретатор команд;
  4. Інтерфейс (система пояснення).
Склад експертної системи

Ядром ЕС є БЗ та процедура висновку. Їх слід розглядати разом, оскільки знання, на основі яких не можна зробити висновки, не мають сенсу.

База знань База знань це сукупність всіх знань що містить експертна система.
Зазвичай БД описують на логічному та фізичному рівнях:

  • Логічний рівень даних: концептуальна схема, яка у структурованому вигляді описує предметну область та її кількісні характеристики у вигляді даних;
  • Фізичний рівень даних: схема, що показує адреси даних в зовнішній пам’яті ЕОМ (файлові структури з різним доступом).

Машина висновку

В галузі ЕС існують суперечки між прихильниками „прямого ланцюжка міркувань” та „зворотного ланцюжка міркувань” як стратегії логічного висновку в цілому. Перше – ланцюг міркувань, що веде від даних до гіпотез, а друге - спроба найти дані для доведення або спростування певної гіпотези.
Прямий ланцюг часто веде до некерованого режиму виникнення питань в діалозі, а зворотний – до наполегливого повторення питань щодо мети. З цієї причини найбільш вдалі системи використовують комбінацію обох ланцюгів. Але в якому б напрямі ні працювала процедура, вона буде мати справу з ненадійними даними, що краще відповідає реальному світу, ніж попередні абстракції, хоча останні зручніше втискувалися в жорсткі рамки комп’ютера.

Інтерпретатор команд

Інтерпретатор команд визначає, як застосовувати правила для виводу нових знань, та диспетчерів, що встановлюють порядок застосування цих правил.

Інтерфейс (система пояснення)

Спеціаліст використовує інтерфейс для введення інформації і команд в експертну систему та одержання вихідної інформації з неї. Команди містять у собі параметри, що спрямовують процес опрацювання знань. Інформація звичайно видається у формі значень, що присвоюються певним змінним.
Технологія експертних систем передбачає можливість одержувати в якості вихідної інформації не тільки рішення, але і необхідні пояснення.

Розрізняють два види пояснень:

  • пояснення, що видаються за вимогою. Користувач у будь-який момент може зажадати від експертної системи пояснення своїх дій;
  • пояснення отриманого рішення проблеми. Після одержання рішення користувач може зажадати пояснень того, як воно було отримано. Система повинна пояснити кожний крок своїх міркувань, що ведуть до розв’язання задачі. Хоча технологія роботи з експертною системою не є простою, інтерфейс користувача цих систем є дружнім і звичайно не викликає труднощів при веденні діалогу.

Класифікація експертних систем

Класифікація ЕС за завданням, що вирішується:

  • Інтерпретація даних
  • Діагностика
  • Моніторинг
  • Проектування
  • Прогнозування
  • Планування
  • Навчання
  • Керування
  • Підтримка ухвалення рішень

Класифікація ЕС за зв'язком з реальним часом:

  • Статичні ЕС
  • Квазідинамічні ЕС
  • Динамічні ЕС

Класифікація ЕС за цілями навчання:

  • Системи, в яких проблематично сформулювати цілі навчання
  • Системи, в яких можна сформулювати ціль навчання, але невідомо, як це зробити
  • Системи з відомими цілями та стратегіями навчання

Етапи розробки експертних систем

Етапи розробки ЕС:

  • Етап ідентифікації проблем - визначаються завдання, які підлягають вирішенню, виявляються цілі розробки, визначаються експерти і типи користувачів
  • Етап витягання знань - проводиться змістовний аналіз проблемної області, виявляються поняття і їх взаємозв'язки, визначаються методи розв'язання задач.
  • Етап структуризації знань - обираються ІС і визначаються способи подання всіх видів знань, формалізуются основні поняття, визначаються способи інтерпретації знань, моделюється робота системи, оцінюється адекватність цілям системи зафіксованих понять, методів рішень, засобів представлення й маніпулювання знаннями.
  • Етап формалізації - здійснюється наповнення експертом бази знань. У зв'язку з тим, що основою ЕС є знання, даний етап є найбільш важливим і найбільш трудомістким етапом розробки ЕС. Процес придбання знань поділяють на вилучення знань з експерта, організацію знань, що забезпечує ефективну роботу системи, і представлення знань у вигляді, зрозумілому ЕС. Процес придбання знань здійснюється інженером зі знань на основі аналізу діяльності експерта з вирішення реальних завдань.
  • Реалізація ЕС - відбувається створення одного або декількох прототипів ЕС котрі вирішують поставлені задачі.
  • Етап тестування - проводиться оцінка обраного способу представлення знань в ЕС в цілому.

Область застосування експертних систем

Експертні системи досить давно використовуються у діагностиці, зокрема у медичній та автомобільній. Також ЕС використовують в прогнозуванні, плануванні, контролі, управлінні та навчанні. Наприклад, експертні системи вже застосовуються в банківській справі в таких напрямках:

  • програмах аналізу інвестиційних проектів
  • програмах аналізу стану валютного, грошового та фондового ринку
  • програмах аналізу кредитоспроможності чи фінансового стану підприємств і банків.

Процес створення експертних систем значно змінився за останні роки. Завдяки появі спеціальних інструментальних засобів побудови експертних систем значно скоротились терміни та зменшилась трудомісткість їх розробки.

paper writing services