Сингулярне розкладання
Дана стаття являється неперевіреним навчальним завданням.
До вказаного терміну стаття не повинна редагуватися іншими учасниками проекту. Після завершення терміну виконання будь-який учасник може вільно редагувати дану статтю і витерти дане попередження, що вводиться за допомогою шаблону. |
Прізвище | Чура |
Ім'я | Наталя |
По-батькові | Ярославівна |
Факультет | ФІС |
Група | СНм-51 |
Залікова книжка | СНм-11-256 |
Сингулярне розкладання (Singular Value Decomposition, SVD) – декомпозиція речовинної матриці з метою її приведення до канонічного виду. Сингулярне розкладання є зручним методом при роботі з матрицями. Воно показує геометричну структуру матриці і дозволяє наочно представити наявні дані. Сингулярне розкладання використовується при вирішенні найрізноманітніших завдань - від наближення методом найменших квадратів і рішення систем рівнянь до стиснення зображень. При цьому використовуються різні властивості сингулярного розкладання, наприклад, здатність показувати ранг матриці, наближати матриці даного рангу. SVD дозволяє обчислювати зворотні і транспонованих матриць великого розміру, що робить його корисним інструментом при вирішенні задач регресійного аналізу.
Для будь-якої речовинної [math](n\times n)[/math] - матриці [math]A[/math] існує дві речовинні ортогональні [math](n\times n)[/math] - матриці [math]U[/math] і [math]V[/math] й такі, що [math]{{U}^{T}}AV[/math] - діагональна матриця [math]\Lambda[/math],
[math]{{U}^{T}}AV=\Lambda[/math].
Матриці