Користувач:Valdemar88
Зміст
Закон Бернуллі
Інтегра́л Берну́ллі рівнянь гідродинаміки — це інтеграл, що визначає в кожній точці потоку ідеальної рідини або баротропного газу тиск [math]p[/math], що встановився: ([math]p=F(\rho)[/math]) через швидкість [math]\vec v[/math] потоку у відповідній точці та через силову функцію [math]\vec u(x,y,z)[/math] об'ємних сил:
[math]\int \frac{dp}{\rho}\ = C - \frac{1}{2}\left | \vec v^2 \right | + \vec u[/math]
Стала [math]C[/math] має для кожної лінії струменю своє значення, що змінюється з переходом від одної лінії струменю до іншої. Якщо рух потенційний, то стала [math]C[/math] одна і таж для всього потоку.
Для руху, що не встановився, інтеграл Бернулі (називають інколи інтегралом Коші—Лагранжа) має місце за наявності потенціалу швидкостей:
[math]\int \frac{dp}{\rho}\ = \frac{\partial \phi}{ \partial t} - \frac{1}{2}\left | \vec v^2 \right | + \vec u + f(t)[/math],
причому [math]\mathbf{v} = \text{grad}\, \phi(x,y,z,t)[/math] а [math]f(t)[/math] — довільна функція часу.
Для нестискуваних рідин ліва частина рівнянь приводиться до вигляду [math]\frac{p}{\rho}[/math] для баротропного газу ([math]p=F(\rho)[/math]) — до вигляду:
[math]\int \frac{dp}{\rho}\ = \int F'(\rho) \frac{d \rho}{\rho}\[/math]
Інтеграл Бернулі запропоновано Бернуллі Даніель ( 1738)
Закон Бернулли является следствием закона сохранения энергии для стационарного потока идеальной (то есть без внутреннего трения) несжимаемой жидкости:
- [math]\tfrac{\rho v^2}{2} + \rho g h + p = \mathrm{const}[/math]
Здесь
- [math]~\rho[/math] — плотность жидкости,
- [math]~v[/math] — скорость потока,
- [math]~h[/math] — высота, на которой находится рассматриваемый элемент жидкости,
- [math]~p[/math] — давление в точке пространства, где расположен центр массы рассматриваемого элемента жидкости,
- [math]~g[/math] — ускорение свободного падения.
Константа в правой части обычно называется напором, или полным давлением, а также интегралом Бернулли. Размерность всех слагаемых — единица энергии, приходящейся на единицу объёма жидкости.
Это соотношение, выведенное Даниилом Бернулли в 1738 г., было названо в его честь уравнением Бернулли. (Не путать с дифференциальным уравнением Бернулли.)
Для горизонтальной трубы [math]h=0[/math] и уравнение Бернулли принимает вид: [math]\tfrac{\rho v^2}{2}+p=\mathrm{const}[/math].
Эта форма уравнения Бернулли может быть получена путём интегрирования уравнения Эйлера для стационарного одномерного потока жидкости, при постоянной плотности [math]\rho[/math]: [math]v\tfrac{dv}{dx}=-\tfrac {1}{\rho}\cdot \tfrac {dp}{dx}[/math].
Согласно закону Бернулли полное давление в установившемся потоке жидкости остается постоянным вдоль этого потока.
Полное давление состоит из весового [math](\rho g h)[/math], статического [math](p)[/math] и динамического [math]\left(\tfrac{\rho v^2}{2}\right)[/math] давлений.
Из закона Бернулли следует, что при уменьшении сечения потока, из-за возрастания скорости, то есть динамического давления, статическое давление падает. Это является основной причиной эффекта Магнуса. Закон Бернулли справедлив и для ламинарных потоков газа. Явление понижения давления при увеличении скорости потока лежит в основе работы различного рода расходомеров (например труба Вентури), водо- и пароструйных насосов. А последовательное применение закона Бернулли привело к появлению технической гидромеханической дисциплины — гидравлики.
Закон Бернулли справедлив в чистом виде только для жидкостей, вязкость которых равна нулю, то есть таких жидкостей, которые не прилипают к поверхности трубы. На самом деле экспериментально установлено, что скорость жидкости на поверхности твердого тела почти всегда в точности равна нулю (кроме случаев отрыва струй при некоторых редких условиях).
Одно из применений
Закон Бернулли можно применить к истечению идеальной несжимаемой жидкости через малое отверстие в боковой стенке или дне широкого сосуда.
Согласно закону Бернулли приравняем полные давления на верхней поверхности жидкости и на выходе из отверстия:
- [math]\rho g h + p_0 = \frac{\rho v^2}{2} + p_0[/math],
где
- [math]p_0[/math] — атмосферное давление,
- [math]h[/math] — высота столба жидкости в сосуде,
- [math]v[/math] — скорость истечения жидкости,
- [math]z\, +\, \frac{p}{\rho g}[/math] — гидростатический напор (сумма геометрического напора z и пьезометрической высоты [math]\frac{p}{\rho g}[/math]).
Отсюда: [math]v = \sqrt{2gh}[/math]. Это — формула Торричелли. Она показывает, что при истечении идеальной несжимаемой жидкости из отверстия в широком сосуде жидкость приобретает скорость, какую получило бы тело, свободно падающее с высоты [math]h[/math].
Часто уравнение Бернулли записывается в виде:
- [math]Hd\, =\, z\, +\, \frac{p}{\rho g}\, +\, \frac{v^2}{2\,g}=\, \text{const}\,[/math]
где
- [math]Hd\,[/math] — гидродинамический напор,
- [math]\frac{v^2}{2\,g}[/math] — скоростной напор.
Для сжимаемого идеального газа
- [math]\frac {v^2}{2}+ gh+\left(\frac {\gamma}{\gamma-1}\right)\frac {p}{\rho} = \mathrm{const}[/math][1] (постоянна вдоль линии тока или линии вихря)
где
- [math]\gamma = \frac{C_p}{C_V}[/math] — Адиабатическая постоянная газа
- [math]p[/math] — давление газа в точке
- [math]\rho[/math] — плотность газа в точке
- [math]v[/math] — скорость течения газа
- [math]g[/math] — ускорение свободного падения
- [math]h[/math] — высота относительно начала координат
При движении в неоднородном поле [math]gh[/math] заменяется на потенциал гравитационного поля.
Термодинамика закона Бернулли
Из статистической физики следует, что на линиях тока при адиабатическом течении остается постоянным следующее соотношение:
- [math]\frac{v^2}{2} + w + \varphi = \mathrm{const}[/math]
где [math]w[/math] — энтальпия единицы массы, [math]\varphi[/math] — потенциал силы. Шаблон:Hider
Практические следствия
- закон Бернулли объясняет эффект притяжения между телами, находящимися на границе потока движущейся жидкости (газа). Иногда это притяжение может создавать угрозу безопасности. Например, при движении скоростного поезда «Сапсан» (скорость движения более 200 км/час) для людей на платформах возникает опасность сброса под поезд[2]. Аналогично «затягивающая сила» возникает при движении судов параллельным курсом: например, подобные инциденты происходили с лайнером «Олимпик».
Приложение
Литература
Література
Милн-Томсон Л. М. «Теоретическая гидродинамика». пер. з англ., М., 1964- ↑ Clancy, L.J., Aerodynamics, Section 3.11
- ↑ Би-Би-Си: «Камни для „Сапсана“, или „месть бедных“»