Сингулярне розкладання

Blue check.png Дана стаття являється неперевіреним навчальним завданням.
Студент: Чура Н. Я.
Викладач: Назаревич О. Б.
Термін до: 18 березня 2012

До вказаного терміну стаття не повинна редагуватися іншими учасниками проекту. Після завершення терміну виконання будь-який учасник може вільно редагувати дану статтю і витерти дане попередження, що вводиться за допомогою шаблону.


Прізвище Чура
Ім'я Наталя
По-батькові Ярославівна
Факультет ФІС
Група СНм-51
Залікова книжка СНм-11-256

Сингулярне розкладання (Singular Value Decomposition, SVD) – декомпозиція речовинної матриці з метою її приведення до канонічного виду. Сингулярне розкладання є зручним методом при роботі з матрицями. Воно показує геометричну структуру матриці і дозволяє наочно представити наявні дані. Сингулярне розкладання використовується при вирішенні найрізноманітніших завдань - від наближення методом найменших квадратів і рішення систем рівнянь до стиснення зображень. При цьому використовуються різні властивості сингулярного розкладання, наприклад, здатність показувати ранг матриці, наближати матриці даного рангу. SVD дозволяє обчислювати зворотні і транспонованих матриць великого розміру, що робить його корисним інструментом при вирішенні задач регресійного аналізу.
Для будь-якої речовинної [math](n\times n)[/math] - матриці [math]A[/math] існує дві речовинні ортогональні [math](n\times n)[/math] - матриці [math]U[/math] і [math]V[/math] й такі, що [math]{{U}^{T}}AV[/math] - діагональна матриця [math]\Lambda[/math],

[math]{{U}^{T}}AV=\Lambda[/math].

Матриці [math]U[/math] і [math]V[/math] вибираються так, щоб диагональні елементи матриці [math]\Lambda[/math] мали вид

[math]{{\lambda }_{1}}\ge {{\lambda }_{2}}\ge ...\ge {{\lambda }_{r}}\gt {{\lambda }_{r+1}}=...={{\lambda }_{n}}=0[/math],
де [math]~r[/math] - ранг матриці[math]A[/math]. Зокрема, якщо [math]A[/math] невироджена, то
[math]{{\lambda }_{1}}\ge {{\lambda }_{2}}\ge ...\ge {{\lambda }_{n}}\gt 0~[/math].

Індекс [math]r[/math] елемента [math]{{\lambda }_{r}}[/math] є фактична розмірність власного простору матриці [math]A[/math].
Стовпці матриць [math]U[/math] і [math]V[/math] називаються відповідно лівими і правими сингулярними векторами, а значення діагоналі матриці [math]\Lambda[/math] називаються сингулярними числами.
Еквівалентна запис сингулярного розкладання [math]A=U\Lambda {{V}^{T}}[/math].
Наприклад, матриця

[math]A=\left( \begin{matrix} 0.96 & 1.72 \\ 2.28 & 0.96 \\ \end{matrix} \right)[/math]