Оптимізаційні методи планування експериментів Крокова процедура метод Гаусса-Зейделя метод крутого сходження
Оптимізаційні методи планування експериментів. Крокова процедура, метод Гаусса-Зейделя, метод крутого сходження
http://elartu.tstu.edu.ua/handle/123456789/372 Презентація доповіді (університетський репозиторій).
Факторний простір та поверхня відклику
Розглянемо простий експеримент, який характеризується двома факторами та одним параметром. Якщо фактори є сумісними між собою, то на площині можна зобразити певну область, в межах якої знаходяться точки, які відповідають станам “чорного ящика” (досліджуваного експериментально об’єкта). Якщо провести ще одну координатну вісь, то отримаємо деяку область простору, в межах якої знаходяться точки, що відповідають значенню параметра оптимізації (рис. 1). Ця область в просторі називається поверхнею відклику а сам простір, в якому будується поверхня відклику, називається факторним простором. Розмірність факторного простору залежить від кількості факторів.
У випадку двох факторів достатньо обмежитися площиною. Якщо спроектувати поверхню відклику на площину, на якій визначаються фактори оптимізації, то отримана проекція, наприклад, може виглядати так, як показано на рис. 2.
Деяка точка М відповідає оптимуму функції відклику досліджуваного об’єкта. Саме цю точку і шукають при оптимізації планування експерименту. Кожна лінія відповідає постійному значенню параметра оптимізації і називається лінією рівного відклику.
Задача оптимізації
Згідно із [1] розв'язання задач управління, проектування і планування тією чи іншою мірою пов'язане з оптимізацією, тобто знаходженням найкращих значень різних параметрів. Звичайно задається або вибирається деякий параметр оптимізації, який залежить від вектора керованих параметрів (факторів варіювання):