Метод крутого сходження
Дана стаття являється неперевіреним навчальним завданням.
До вказаного терміну стаття не повинна редагуватися іншими учасниками проекту. Після завершення терміну виконання будь-який учасник може вільно редагувати дану статтю і витерти дане попередження, що вводиться за допомогою шаблону. |
Прізвище | Храплива |
Ім'я | Уляна |
По батькові | Вікторівна |
Факультет | ФІС |
Група | СНм-51 |
Залікова книжка | СНм-11-253 |
Метод крутого сходження (метод Бокса - Уїлсона)
Метод крутого сходження, або метод Бокса - Уїлсона, поєднує істотні елементи методу Гаусса - Зейделя і градієнтного методу з методами ПФЕ або ДФЕ. Так, при використанні алгоритму крутого сходження кроковий рух з точки [math](\vec x)_k\[/math] здійснюється в напрямі найшвидшого зростання рівня виходу, тобто по [math]\ grad(y({\vec x}_k))[/math], проте, на відміну від градієнтного методу, коректування напряму здійснюється не після кожного наступного кроку, а після досягнення в
деякій точці [math]{\vec x}_m[/math] на даному напрямі часткового екстремуму цільової функції (рис. 1), аналогічно методу Гаусса - Зейделя.
Важливою особливістю методу Бокса - Уїлсона є також регулярне проведення статичного аналізу проміжних результатів на шляху до оптимуму.
Порядок виконання операцій при пошуку екстремуму за методом крутого сходження такий:
1) проводиться повний або дробовий факторний експеримент з центором у вихідній точці [math]{\vec x}_0[/math] для визначення [math]\ grad(y({\vec x}_0))[/math]. Результати експерименту піддаються статистичному аналізу, який включає:
а) перевірку відтворюваності експерименту;
б) перевірку значщості оцінок коефіцієнтів [math]b_i[/math] лінійної моделі об'єкта;
в) перевірк адекватності утвореної лінійної моделі
досліджуваному об'єкту.
Порядок виконання цих операцій детально викладено у попередніх главах;
2) обчислюються добутки [math]\ b_i \Delta {x_i}[/math], де [math]\Delta {x_i}[/math] - крок варіювання параметра [math]x_i[/math] при проведенні ПФЕ, і фактор, для якого цей добуток максимальний, береться як базовий
3) для базового фактора вибирають крок варіювання при крутому сходженні [math]\rho[/math], залишаючи старий крок або впроваджуючи дрібніший;
4) визначаються розміри [math]\rho_j[/math] за рештою змінних процесу [math]\ x_j(j \ne i)[/math]. Оскільки під час руху по градієнту варійовані параметри повинні змінюватися пропорційно коефіцієнтам [math]\ b_j = {\textstyle{{\Delta y} \over {\Delta {x_j}}}}[/math], які є компонентами вектора [math]\ grad(y(x))[/math], то відповідні [math]\rho_j[/math] знаходяться за формулою
де [math]\rho[/math] і [math]\Delta {x_j}[/math] завжди додатні, а коефіцієнт [math]b_j[/math] береться зі своїм знаком;
5) проводяться уявні досліди, які полягають у завбаченні значень виходу [math]y_k({\vec x}_k)[/math] у певних точках [math]{\vec x}_k[/math] факторного простору (див. рис.1). Для цього незалежні змінні лінійної моделі обєкта змінюються з урахуванням [math]b_i = \Delta y/\Delta {x_i}[/math] таким чином, щоб зображуюча точка [math]\vec x[/math] виконувала кроковий рух у напрямі вектора [math]\ grad({\vec x}_1)[/math], займаючи послідовно положення
Очевидно, що j-а координата k-ї точки визначається так:
Тоді
Зробимо підстановку
або ще зручніше
6) уявні досліди продовжуються до тих пір, поки виконується нерівність
де [math]y_{max}[/math] - максимально можливий вихід, який визначається з фізичних міркувань;
7) деякі з уявних дослідів (звичайно через кожні 2-3 уявних кроки) реалізуються на обєкті для перевірки відповідності апроксимації обєкта утвореним рівнянням(гіперплощиною). Спостережені значення [math]y_{exper}[/math] порівнюють із завбаченими [math]y_{zav}[/math] (див. рис.1);
8) точка [math]{\vec x}_m[/math], де в реальному досліді утворено максимальне значення виходу, береться за нову початкову точку, і етап крутого сходження, описаний вище, повторюється;
9) оскільки кожен етап крутого сходження наближає зображуючу точку до області екстремуму [math]y(\vec x)[/math], де крутість поверхні відклику менша, то для кожного наступного етапу [math]\rho[/math] береться рівним або меншим попереднього;
10) пошук припиняється,коли всі коефіцієнти [math]b_i, (i=1,2,...,n)[/math] лінійної моделі обєкта виходять незначущими. Це свідчить про вихід в область екстремуму цільової функції.