Кластерний аналіз
Кластерний аналіз
Кластерний аналіз (англ. Data clustering) - задача розбиття заданої вибірки об'єктів (ситуацій) на підмножини, що називаються кластерами, так, щоб кожен кластер складався з схожих об'єктів, а об'єкти різних кластерів істотно відрізнялися. Задача кластеризації відноситься до статистичної обробки, а також до широкого класу задач навчання без учителя.
Кластерний аналіз - це багатовимірна статистична процедура, що виконує збір даних, що містять інформацію про вибірку об'єктів, сортування об'єктів в порівняно однорідні групи (кластери) (Q-кластеризація, або Q-техніка, власне кластерний аналіз).
Кластер - група елементів, якi характеризуються загальною властивістю, головна мета кластерного аналізу - знаходження груп схожих об'єктів у вибірці. Спектр застосування кластерного аналізу дуже широкий: його використовують в археології, медицині, психології, хімії, біології, державному управлінні, філології, антропології, маркетингу, соціології та інших дисциплінах. «Тематика досліджень варіює від аналізу морфології муміфікованих гризунів у Новій Гвінеї до вивчення результатів голосування сенаторів США Однак універсальність застосування призвела до появи великої кількості несумісних термінів, методів і підходів, що ускладнюють однозначне використання і несуперечливу інтерпретацію кластерного аналізу.
Задачі і умови
Кластерний аналіз виконує такі основні завдання:
- Розробка типології або класифікації.
- Дослідження корисних концептуальних схем групування об'єктів.
- Породження гіпотез на основі дослідження даних.
- Перевірка гіпотез або дослідження для визначення, чи дійсно типи (групи), виділені тим або іншим способом, присутні у наявних даних.
Незалежно від предмета вивчення застосування кластерного аналізу припускає наступні етапи:
- Відбір вибірки для кластеризації
- Визначення безлічі змінних, за якими будуть оцінюватися об'єкти у вибірці.
- Обчислення значень тієї чи іншої міри схожості між об'єктами.
- Застосування методу кластерного аналізу для створення груп схожих об'єктів.
- Перевірка достовірності результатів кластерного рішення.
Кластерний аналіз пред'являє наступні вимоги до даних:
- Показники не повинні корелювати між собою,
- Показники повинні бути безрозмірними;
- Їх розподіл має бути близько до нормального;
- Показники повинні відповідати вимогу «стійкості», під якою розуміється відсутність впливу на їх значення випадкових факторів;
- Вибірка повинна бути однорідна, не містити «викидів». Якщо кластерного аналізу передує факторний аналіз, то вибірка не потребує «ремонту» - викладені вимоги виконуються автоматично самою процедурою факторного моделювання (є ще одна перевага - z-стандартизація без негативних наслідків для вибірки; якщо її проводити безпосередньо для кластерного аналізу, вона може спричинити за собою зменшення чіткості поділу груп). В іншому випадку вибірку потрібно коригувати.