Відмінності між версіями «Дрейф неоднорідностей»
(→Дрейф неоднорідностей) |
|||
Рядок 1: | Рядок 1: | ||
{{Завдання|sloyka_yaroslav|Назаревич О.Б.|07 березня 2010}} | {{Завдання|sloyka_yaroslav|Назаревич О.Б.|07 березня 2010}} | ||
− | .................... Презентація доповіді ( | + | .................... Презентація доповіді (http://elartu.tstu.edu.ua/handle/123456789/403). |
= Дрейф неоднорідностей = | = Дрейф неоднорідностей = |
Версія за 16:59, 7 березня 2010
Дана стаття являється неперевіреним навчальним завданням.
До вказаного терміну стаття не повинна редагуватися іншими учасниками проекту. Після завершення терміну виконання будь-який учасник може вільно редагувати дану статтю і витерти дане попередження, що вводиться за допомогою шаблону. |
.................... Презентація доповіді (http://elartu.tstu.edu.ua/handle/123456789/403).
Дрейф неоднорідностей
Наведемо результати досліджень теплофізичних характеристик соко-стружкової суміші дифузійних апаратів цукрової промисловості. Відомо, що на коефіцієнт теплопровідності λ цукрових розчинів, в основному, впливають концентрація цукру і температура розчину. На ефективну теплопровідність соко-стружкової суміші впливають також численні фактори, які при проведенні експериментів спотворюватимуть вплив основних факторів. Серед них до часового дрейфу належить наявність на поверхні стружки адсорбованого повітря, кількість якого змінюватиметься в процесі контакту соку і стружки, а також зміна концентрації цукру в стружці в процесі дифузії. Проте серед факторів є один, який до часового дрейфу не належить. Це ступінь неоднорідності суміші або, як називають його виробничники, навантаження об’єму.
Навантаження об’єму – це концентрація стружки в соці, точніше маса стружки, що припадає на одиницю об’єму суміші. Навантаження об’єму дифузійного апарата, що складає в середньому 0,4-0,5 кг/дм3, може знижуватися до 0,2-0,3 кг/дм3, або зростати до 0,6-0,7 кг/дм3, причому його зміну не можна пов’язати з плином часу. Тому при проведенні дослідження вирішено вибрати дрейф неоднорідностей за рахунок змін навантаження об’єму, а впливу решти шумових факторів уникнути, проводячи вимірювання теплопровідності в стаціонарному режимі через однаковий проміжок часу з моменту змішування стружки і соку для всіх зразків. Перший основний параметр x1 (середню температуру зразка в стаціонарному режимі) встановлювали регулюванням потужності електронагрівача приладу, другий x2 (концентрацію цукру в соці) обчислювали по вихідній концентрації розчину c %.
Розв’язання
Оскільки метою дослідів було з’ясувати, чи є навантаження об’єму шумовим чи основним фактором, планування було проведене з розрахунку простого дрейфу – ступінчастого. Рівні та інтервали вимірювання основних факторів для ПФЕ 22 наведене в таблиці 1. За правилами ортогональності розбиваємо матрицю планування на два блоки, які є напіврепліками 22-1. Порівнюємо парну взаємодію безрозмірних факторів z1 z2 з новою незалежною змінною, яка характеризує дрейф
Таблиця 1 Вхідні дані для ПФЕ в умовах ступінчастого дрейфу
У першому блоці проводилися досліди при zд = -1, як нижній рівень навантаження об’єму обрали величину 0,3 кг/дм3 , у 2-му - zд = +1, навантаження об’єму було 0,6 кг/дм3. Матриця планування та результати вимірювання вихідної функції y, тобто коефіцієнти теплопровідності λ, Вт/(м*К), наведено в таб. 2
Таблиця 2 Матриця ПФЕ для умов ступінчастого дрейфу неоднорідності
Для обробки використовувалися рівняння, наведені в п.6,2 [1]. У результаті утворено математичну модель поведінки теплопровідності соко-стружкової суміші в процесі екстракції для безрозмірних факторів
Перехід до вимірних параметрів проведено за допомогою звичайних способів
Таким чином, утворено залежність для λ тільки від основних факторів, виключивши вплив навантаження об’єму. Зазначимо, що звільнившись від впливу дрейфу (часового або неоднорідностей) можна оцінити його і вирішити, чи немає потреби перевести який-небудь із шумових факторів в основні. Для цього треба розрахувати коефіцієнт при zд за формулою.
У нашому прикладі
Потім треба розрахувати y для обох блоків у центрі плану експерименту. Різниця між значеннями y для обох блоків дає оцінку зміни функції відклику. Розрахунки для прикладу λ за 1-м блоком:
за 1-м блоком:
Загальний дрейф функції відклику в результаті збільшення навантаження об’єму з 0,3 до 0,6 кг/м3 такий:
Отже функція відклику змінилася на 10% при цілком реальній у виробничих умовах зміні навантаження об’єму. Аналіз утворених результатів показав, що цей вплив зіставлюваний з впливом незалежних змінних t і c , тому в подальшому при дослідженнях треба перейти від двофакторних до трифакторних експериментів.