Відмінності між версіями «Насадка Борда»

Рядок 24: Рядок 24:
  
  
<math>{{Z}_{1}}+\frac{P1}{\rho g}+\frac{a1\nu _{1}^{2}}{2g}={{Z}_{2+}}\frac{P2}{\rho g}+\frac{a2\nu _{2}^{2}}{2g}+{{k}_{\omega 1-2}}</math>                                                                                                                       (2)
+
<math>{{Z}_{1}}+\frac{P1}{\rho g}+\frac{a1\nu _{1}^{2}}{2g}={{Z}_{2+}}\frac{P2}{\rho g}+\frac{a2\nu _{2}^{2}}{2g}+{{k}_{\omega 1-2}}</math>     (2)
  
де
+
z1=H
 +
p1=pa
 +
<math>\rho </math>=0

Версія за 20:09, 5 червня 2011

Насадка Борда-(Насадка внутрішня) (рос. насадка внутренняя (Борда); англ. internal mouthpiece (Borda); нім. Inneneinsatz m, Borda-Inneneinsatz m, Innenaufsatz m) – круглоциліндрична насадка, розміщена з внутрішнього боку стінки посудини (або водойми), з якої вона живиться. Насадка Борда використовується для спорожнення резервуарів, коли з конструктивних міркувань не можна встановити насадок Вентурі .

Історія винекнення

Внутрішня насадка Борда названа на честь французького вченого, фізика та геодезиста Шарля Жан Борда (4.5.1733, Дакс, — 19.2.1799, Париж)Член Паризької АН. Служив офіцером у армії, потім на флоті. Визначив (1792) довжину секундного маятника в Парижі і знайшов спосіб точного визначення періоду хитання маятника. 1766р. запропонував внутрішню насадку для збільшення витрати рідини, яка витікає з судини, при заданому перерізі вихідного отвору. Довів що носить його ім'я теорему в гідравліці про удар струменя рідини чи газу. Розробив одну із систем вертикальних осей астрономо-геодезичних інструментів.


Витікання рідини через внутрішню насадку

[math]Q={{\mu }_{}}\omega \sqrt{2g{{H}_{c}}}[/math]         (1)

де [math]{{H}_{c}}[/math] - напір на рівні центру тяжіння отвору [math]{{\mu }_{}}[/math] - коефіцієнт витрат великого отвору

Формула (1) і значення [math]{{\mu }_{}}[/math] можуть бути застосовані для отворів будь-якої форми.



Розрахунок насадки.gif (рис.1)

Приєднання насадка до отвору того ж діаметру змінює характер перебігу. Це добре можна показати, застосовуючи рівняння Бернуллі до січень 1-1 і 2-2, а потім 1-1 і 3-3.Як можна бачити на (рис.1), потік рідини в насадці можна розділити на дві зони. Основна частина - це власне струмінь. Течія в області стиснутого перерізу (2-2), несталий. Воно виникає внаслідок того, що при видаленні повітря з цієї області на початку руху, тут утворюється зона розрідження. Величину вакууму легко вимірюють за допомогою вакуумметра будь-якої конструкції. Наявність вакууму всередині насадка, приєднаного до отвору, сприяє додатковому підсосу рідини і збільшення пропускної здатності отвори, що визначається за рівнянням Бернуллі для перерізів 1-1 і 2-2.


[math]{{Z}_{1}}+\frac{P1}{\rho g}+\frac{a1\nu _{1}^{2}}{2g}={{Z}_{2+}}\frac{P2}{\rho g}+\frac{a2\nu _{2}^{2}}{2g}+{{k}_{\omega 1-2}}[/math] (2)

z1=H p1=pa [math]\rho[/math]=0