Відмінності між версіями «Юліус Вейсбах»

(Формула Вейсбаха)
м (Формула Дарсі-Вейсбаха)
Рядок 62: Рядок 62:
 
: <math> \Delta P = \lambda \cdot \frac{L}{D} \cdot \frac{V^2}{2} \cdot \rho</math>
 
: <math> \Delta P = \lambda \cdot \frac{L}{D} \cdot \frac{V^2}{2} \cdot \rho</math>
  
Останні дві залежності отримали назву '''формули Дарсі-Вейсбаха'''. Запропонована Л. Ю. Вейсбахом (L. J. Weisbach) у 1845 і [[Анрі Дарсі|А. Дарсі]] у 1857 роках.
+
Останні дві залежності отримали назву '''формули Дарсі-Вейсбаха'''. Запропонована Л. Ю. Вейсбахом (L. J. Weisbach) у 1845 і Анрі Дарсі у 1857 роках.
  
Якщо визначаються втрати на тертя для труби не круглого поперечного перерізу, то за <math>D</math> береться [[гідравлічний діаметр]].
+
Якщо визначаються втрати на тертя для труби не круглого поперечного перерізу, то за <math>D</math> береться гідравлічний діаметр.
  
 
Слід відзначити, що втрати напору на гідравлічних опорах не завжди пропорційні швидкісному напору.
 
Слід відзначити, що втрати напору на гідравлічних опорах не завжди пропорційні швидкісному напору.

Версія за 17:48, 22 травня 2012

Юліус Вейсбах
Юліуc Людвіг Вейсбах (народився 10 серпня 1806 р. в Центральному Шмейденбергу, помер 24 лютого 1871 р. в місті Фрайберг) - німецький математик та інженер.

Життя

Місце народження Юліуcа Людвіга Вейсбаха
Табличка на домі Вейсбаха
Пам'ятник Вейсбаху в містечку Фрайбург

Вейсбах народився у Хаммершеньке в Центральному Шмейденбергу поблизу Анабергу як восьма дитина християнської сімї Готліба Вейсбаха (1764-1835) і Крістіани Ребекки Стефан (1775-1850). Його мати походила з родини теслярів Арнсфельда. Вейсбах виріс в убогості. Його батько зізнається, що талант Вейсбаха і дозволив йому після відвідання сільської школи навчатись у середній школі в Анабергу. Через його науковий талант протягом року закінчив два класи і пропустив третій клас. У 1820 році він продовжив навчання в Королівській гірничій школі в Фрейберзі.

З 1822 по 1826 вчився Вейсбах у Бергакадемі (Фрейберзі), приділяючи особливу увагу мінерології, геології, математиці, фізиці, теоретичній механіці та практиці видобутку. У 1827 році він продовжив навчання в Георг-Август-Університет Геттінгена і в Політехнічній школі у Відні. Його вчителями були Бернхард Фрідріх Тібо (Лондон) і Фрідріха Мооса (Фрайберг і Відень). У деяких джерелах Карл Фрідріх Гаусс згадується в навчальному контексті, однак не може бути доведено, що Вейсбах справді чув лекції Гаусса.

В 1830 Юлій Вейсбах отримав стипендію, щоб поїхати для дослідження гірничої справи через Австрію та Угорщину. Коли пройшов рік, Вейсбах повернувся у Фрейберзі, де він вперше навчав, як учитель математики в школі. В 1832 шлюб з Марі Вінклер (1807-1878). В 1833 гірнича академія доручила йому кафедру прикладної математики та дослідженя гірських машин, 1836 року він був призначений професором прикладної математики, механіки, гірських машин. Пізніше він також провів лекції з кристалографії, нарисної геометрії і в інших областях. Він також говорив на кількох іноземних мовах.

В 1844 Вейсбах працював один для будівництва Рот Шенбергера Столн. У 1845 році він співпрацював з Анрі Дарсі для отримання формули Дарсі-Вейсбаха. У 1860 році йому було присвоєно відповідальність за обстеження Саксонії, де він зосереджував увагу в основному на гіпсометричних роботах.

Юлій Вейсбах отримав численні нагороди, 1856 Тітелберга Рата. У 1859 році він став почесним доктором філософії в Лейпцігському університеті і в 1860 році він став першим почесним членом Асоціації німецьких інженерів. Його син, мінералог Альбін Юліус Вейсбах (1833-1901), також працював багато років професором в Фрейзберзькій гірничій академії.

Юлій Вейсбах помер в 1871 році від інсульту. Він був похований на кладовищі Донат у Фрайбурзі.

Заслуги

Вейсбах здобув багато досягнень, особливо в області гірничодобувної інженерії. Він замінив теодолітове вирівнювання на традиційні методи вимірювання з використанням компаса, транспортира і вимірювального ланцюга. Його вчення було в епоху промислової революції, яка виражалася в гірничодобувній промисловості зокрема в прорив використання парових двигунів. Гірські машини Вейсбаха в доктрині, пов'язані з новими вимогами часу. З його книги monodimetrische і анізометрічних проекцій метод Вейсбаха є одним із засновників ортогональної аксонометрії. Його підручник техніки та інженерної механіки (1846) був розглянутий міжнародно як стандартним довідковим виданням у галузі машинобудування. Крім того, викладання Вейсбаха було характерно в тісному поєднанні теорії і практики.

1994 рік був прив'язаний до своєї батьківщини в Центральному Шмейденбергу. 2002 року, друзі Юліуса Вейсбаха заснували асоціації родичів вченого.

Формула Вейсбаха

Формула Вейсбаха запропонована науці в 1855 році

[math]\Delta h = \xi \cdot \frac{V^2}{2g}[/math]

де

  • [math]\Delta h[/math] — втрати напору на гідравлічних опорах;
  • [math]\xi[/math] — коефіцієнт втрат ;
  • [math]V[/math] — средня швидкість протіканя речовини;
  • [math]g[/math] — прискорення вільного падіння;
  • величина називається [math]\frac{V^2}{2g}[/math] швидкісним (чи динамічним) напором.

Формула Вейсбаха, визначає втрати тиску на гідравлічному опорі, має вигляд:

[math]\Delta P = \xi \cdot \frac{V^2}{2} \cdot \rho[/math]

де

[math]\Delta P[/math] — втрати тиску на гідравлічному опорі;
[math]\rho[/math] — густина речовини.

Формула Дарсі-Вейсбаха

Якщо гідравлічний опір розглядається у вигляді ділянки труби довжиною [math]L[/math] і діаметром [math]D[/math], то коефіцієнт Дарсі визначається наступним чином:

[math]\xi = \lambda \cdot \frac{L}{D},[/math]

де

[math]\lambda[/math] — коефіцієнт гідравлічного тертя по довжині (коефіцієнт Дарсі).

Тоді формула Вейсбаха набуває вигляду, у якому вона записується і до теперішнього часу:

[math]\Delta h = \lambda \cdot \frac{L}{D} \cdot \frac{V^2}{2g}[/math]

або для втрати тиску:

[math]\Delta P = \lambda \cdot \frac{L}{D} \cdot \frac{V^2}{2} \cdot \rho[/math]

Останні дві залежності отримали назву формули Дарсі-Вейсбаха. Запропонована Л. Ю. Вейсбахом (L. J. Weisbach) у 1845 і Анрі Дарсі у 1857 роках.

Якщо визначаються втрати на тертя для труби не круглого поперечного перерізу, то за [math]D[/math] береться гідравлічний діаметр.

Слід відзначити, що втрати напору на гідравлічних опорах не завжди пропорційні швидкісному напору.

Роботи

  • Довідник з механіки гірських машин (два томи), Вейдманн, Лейпциг 1835/1836
  • Підручник техніки та інженерної механіки, Фрідріх Vieweg унд Sohn, Брауншвейг 1846-1868
    • Частина перша: Теоретична механіка, 2-й Edition 1850: [1], 4. Edition 1863 [2], Teil 1, Teil 2
    • Друга частина: статики споруд та механіки Umtriebsmaschinen, 2 Edition 1851: [3], 4. Edition 1868: [4], [5], Teil 1, Teil 2
    • Третя частина: містить проміжні і машини, 1-3. Edition 1860: [6], [7], [8], Teil 1, Teil 2
  • Інженер. Збірник таблиць, формул і правил, Фрідріх Vieweg унд Sohn, Брауншвейг першу Edition 1848: [9], 5. Edition 1868: [10]
  • Новий рудник-мистецтва і його застосування до інвестицій Рот Шенбергера Stolln Фрайберга, Фрідріх Vieweg унд Sohn, Брауншвейг 1851
  • Експериментальних гідравліки. Керівництво по додаванню гідравлічних випробувань в невеликих масштабах, поряд з цим опис необхідного обладнання, Ю. Г. Енгельгардт, Фрайберг 1855 (на Google Books: [11])
  • Monodimetrische і анізометрічних Проекційний метод, технічним повідомлень Volz і Karmarsch, том 1, 1844 Тюбінген, 125-136
  • Інструкція по аксонометричній малюнок, Ю. Г. Енгельгардт, Фрайберг 1857
  • Лекції з математичної географії, яка відбулася у Королівській Саксонської гірничої академії Фрайберга, Ю. Г. Енгельгардт, Фрайберг 1878 (на HU Берліні: [12])

Галерея

Література

  • Юлій Вейсбах: Пам'ятні сто п'ятидесятого його День народження. Академія-Verlag, Берлін 1956th (Фрейбергер Forschungshefte D 16)
  • Юлія Л. Вейсбах (1806-1871) за його двохсотий Пам'ятні День народження. Фрейбергер Forschungshefte D 222, Ту Фрайберг Bergakademie 2006
  • Вольфганг Kuchler: Юлій Вейсбах Людвіг (1806-1871). Рудні гори будинку листя 1, 1994, стор 8-10.
  • Бернд Шрейтер: Юлій Вейсбах - математик, землеміром і машина спостерігачів (з предком список). Видавець Бернд Шрейтер, Arnsfeld 2005, том 1 серії Weisbachiana - Питання, гірничої справи, металургії та генеалогії.
  • Вільгельм Гумбеля: Вейсбах, Альбіна Юліуса [так в оригіналі]. В: Біографія німецького (АБР). Том 41, Дункер і Humblot, Лейпциг 1896, стор 522 f.

Посилання