Відмінності між версіями «Критерій узгодженості Стьюдента»

(Створена сторінка: '''Критерій узгодженості Стьюдента''' - статистичний критерій згоди, заснований на порівня…)
 
Рядок 21: Рядок 21:
  
 
Як свідчить структура відношення Стьюдента, <math>t</math>-розподіл використовується при розв'язанні першої групи задач(задачі порівняння середнього значення виміряного ряду змінних із заданими значеннями або з середнім іншого ряду), проте його також застосовують при виявленні грубих помилок та ін.
 
Як свідчить структура відношення Стьюдента, <math>t</math>-розподіл використовується при розв'язанні першої групи задач(задачі порівняння середнього значення виміряного ряду змінних із заданими значеннями або з середнім іншого ряду), проте його також застосовують при виявленні грубих помилок та ін.
 +
 +
[[Категорія:Планування експерименту]]

Версія за 13:34, 26 лютого 2012

Критерій узгодженості Стьюдента - статистичний критерій згоди, заснований на порівнянні з розподілом Стьюдента (t-розподілом). Розроблений англійським хіміком-харчовиком Вільямом Госсетом (псевдонім — Стьюдент). Для практичного вивчення робочих процесів закон нормального розподілу часто не підходить, хоча існують підстави вважати, що змінна розподілена нормально. Це пов'язано з тим, що як аргумент до нормального розподілу входять математичне сподівання [math]M[/math] та СКВ [math]\sigma[/math], які звичайно залишаються невідомими, тому його замінюють розподілом Стьюдента, який застосовується для нормально розподіленої послідовності.

Закон розподілу

[math]t=\frac{x_0}{\sqrt{{m^{-1}}*{\left (x_1^2+x_2^2+...+x_m^2 \right)}}[/math],

де [math]x_0,x_1,...,x_m[/math] - взаємно незалежні нормально розподілені випадкові величини з [math]M=0[/math] і довільними дисперсіями [math]D[/math].

Закон Стьюдента свідчить, що [math]p(t)[/math] залежить від числа ступенів вільності [math]f=N-1[/math] та величини [math]S[/math]. Критерій [math]t[/math] може набувати різних форм, а [math]t[/math]-розподіл лежить в основі теорії малих вибірок, яка відіграла значну роль в плануванні експериментів.

Криві розподілу

Криві розподілу

Максимуми частоти нормального та [math]t[/math]-розподілів лежать при одному й тому ж значенні абсциси. Проте на відміну від нормального розподілу висота і ширина кривих нормованого [math]t[/math]-розподілу залежать від числа ступенів вільності [math]f[/math] відповідного СКВ. Чим менше [math]f[/math], тим більш похилий хід має крива при одному й тому ж значенні [math]S[/math]. При [math]f \to \ \infty[/math] [math]t[/math]-розподіл переходить у нормальний розподіл. Відповідно до цього для ходу кривої, який залежить від [math]f[/math], межі інтегрування [math]p[/math] при заданій надійній імовірності [math]\gamma[/math] все більше віддаляються від середнього значення зі зменшенням числа ступенів вільності [math]f[/math]. Так, для [math]\gamma[/math] = 0,95 виміряні значення не лежать в області [math]x[/math] ± 25. Цей інтервал стає тим ширшим, чим менше вимірювань було проведено.

Застосування

Як свідчить структура відношення Стьюдента, [math]t[/math]-розподіл використовується при розв'язанні першої групи задач(задачі порівняння середнього значення виміряного ряду змінних із заданими значеннями або з середнім іншого ряду), проте його також застосовують при виявленні грубих помилок та ін.