Відмінності між версіями «Витікання газів через отвори»

Рядок 3: Рядок 3:
  
 
Легше і найчастіше спостерігається витікання рідин, і тому витікання вивчено майже виключно на рідинах;  знайдені закони з успіхом були застосовані згодом до твердих тіл і '''газів'''. Теорія витікання становить одну з важливих розділів гідродинаміки – вчення про рух рідини; практична її сторона і додатки розглядаються в гідравліці або гідротехніці.
 
Легше і найчастіше спостерігається витікання рідин, і тому витікання вивчено майже виключно на рідинах;  знайдені закони з успіхом були застосовані згодом до твердих тіл і '''газів'''. Теорія витікання становить одну з важливих розділів гідродинаміки – вчення про рух рідини; практична її сторона і додатки розглядаються в гідравліці або гідротехніці.
 +
  
  

Версія за 14:47, 7 червня 2011

Витікання газів через отвори.jpg

Витікання - якщо два матеріальних середовища відокремлені один від одного стінкою, яка має отвори, і тиск, під яким знаходяться ці середовища, неоднакові, то середовище, що знаходиться під великим тиском, виходить в сусіднє середовище у вигляді струменя - потоку першого середовища, обмеженого з усіх сторін другим середовищем. Це явище називається витіканням. Витікання відбувається або під впливом зовнішніх сил, або під впливом сили тяжіння, або, нарешті, під сукупною їх дією. Від витікання потрібно відрізняти вихід одного середовища в інше, що знаходиться під тим же тиском, під впливом одних внутрішніх (молекулярних сил); Це явище є дифузією. Витікання тіл можна спостерігати при всіх трьох станах – твердому, рідкому і газоподібному.

Легше і найчастіше спостерігається витікання рідин, і тому витікання вивчено майже виключно на рідинах; знайдені закони з успіхом були застосовані згодом до твердих тіл і газів. Теорія витікання становить одну з важливих розділів гідродинаміки – вчення про рух рідини; практична її сторона і додатки розглядаються в гідравліці або гідротехніці.


Витікання газів через отвори

Витікання газів через отвори слідує тим же основним законам, що і витікання рідин; але у випадку газів ми маємо діло з речовиною, обсяг і щільність якої залежить від тиску, тому не можна, як у випадку рідин, вважати середовище нестискуваним. Витікання завжди відбувається під впливом різниці тиску, а отже, витікаючий струмінь газу, що потрапляє в середовище з меншим тиском, займає більший об'єм, розширюється. Розширення газу завжди супроводжується охолодженням його, а охолодження в свою чергу ж кличе за собою знову зміни в об’ємі, щільності і тиску. Зважаючи на це, розвязування загальних задач про витікання газів представляє одну з найважчих розділів аеродинаміки - науки про рухи газів; повний розгляд питань витікання газів мало б вестися не тільки на підставі принципів гідродинаміки, але і на підставі механічної теорії тепла і кінетичної теорії газів. Якщо знехтувати охолодженням газу від розширення і дією сили тяжіння, то для швидкості V витікання газу, під впливом однієї різниці тиску, отримаємо формулу:


[math]V={{a}^{2}}\frac{2\ln \frac{{{\rho }_{0}}}{{{\rho }_{1}}}}{1-{{(\frac{{{q}_{1}}{{\omega }_{1}}}{{{q}_{0}}{{\omega }_{0}}})}^{2}}}[/math]


де

[math]a[/math] - стала Маріотта. (див. Гази)

[math]{{\rho }_{0}}[/math], [math]{{q}_{0}}[/math], [math]{{\omega }_{0}}[/math] - тиск, перетин і щільність для посудини, з якої закінчується газ.

[math]{{\rho }_{1}}[/math], [math]{{q}_{1}}[/math], [math]{{\omega }_{1}}[/math] - ті ж величини для місця найменшого перерізу струменя.


Більш простий вираз для [math]V[/math] отримаємо з формули Торрічеллі, застосувавши її до газів:


[math]V=\sqrt{\frac{2g({{\rho }_{0}}-{{\rho }_{1}})}{\omega }}[/math]


Якщо візьмемо, що газ виходить під тиском однієї атмосфери з отвору в порожнечу, то отримаємо за цією формулою для повітря, що виходить в порожнечу, величезну швидкість в 396 метрів, що дорівнює швидкості рушничної кулі; для водню - швидкість в 4 рази більшу і т. д . З формули (2) випливає, що швидкості витікання газів обернено пропорційні їх плотностям (див. Дифузія). Цей закон, знайдений дослідно Гремом (1836) і підтверджений точними дослідами Бунзена (1857), служить підставою для одного із способів визначення щільності газів. При вітіканні газів у вигляді струменя спостерігається те ж основне явище стиснення струменя, що і при витіканні рідин. Його легко помітити, якщо спостерігати витікання струменя пофарбованого газу або тютюнового диму. Чудово, що коефіцієнт стиснення струменя (K) для газів дуже близький за величиною до того ж коефіцієнту для рідин. Так, за Вейсбаха, величини K:


Отверстие с совершенной насадкой 0,947 Отверстие с конической 0,883 Отверстие с цилиндрической 0,839 Отверстие с в тонкой стенке 0,671



На цей коефіцієнт необхідно помножити перетин отвору при визначенні кількості газу який витік в одиницю часу. Питання про величину тиску в місці звуження, тобто про величину [math]{{\rho }_{1}}[/math](формула 1.), вирішив приблизно Гюгоніо (1886), який показав, що [math]{{\rho }_{1}}[/math] дорівнює тиску [math]{{\rho }_{2}}[/math] в тому середовищі, в яку газ витікає, лише тоді, коли при повільному витіканні [math]{{\rho }_{2}}\gt 0.607{{\rho }_{0}}[/math], а при бистрому [math]{{\rho }_{2}}\gt 0.522{{\rho }_{0}}[/math]; якщо ж p2 < βp0 (де β рівно 0,607 або 0,522), то p1 = βp0. Звідси випливає чудове, спостережене ще Вейсбахом (1855), Гирном (1885) та іншими, але пояснене лише Гюгоніо явище, а саме, що кількість витікаючого в одиницю часу газу зростає пропорційно різниці тиску лише до тих пір, поки відношення тисків у двох середовищах не досягне 0,5-0,6; вище того швидкість витікання газу постійна. Це цілком підтвердилося новітніми дослідами Сальхера і Вейсхіда (1889).