Відмінності між версіями «Рівняння нерозривності»
Рядок 30: | Рядок 30: | ||
Це рівняння доповнює систему рівнянь Ейлера до замкнутої системи чотирьох рівнянь відносно чотирьох невідомих функцій. | Це рівняння доповнює систему рівнянь Ейлера до замкнутої системи чотирьох рівнянь відносно чотирьох невідомих функцій. | ||
+ | 3 Рівняння нерозривності стаціонарного руху рідини в гідравлічній формі | ||
+ | Розглянемо спочатку елементарну струминку . Відповідно до закону збереження маси можна стверджувати, що масова витрата через усякий живий переріз елементарної струминки є величиною сталою, тобто | ||
+ | dm=uρdω=const. | ||
+ | Цей висновок випливає з властивостей елементарної струминки: у протилежному випадку масова витрата повинна зростати або зменшуватись необмежено, а це суперечить умові стаціонарного руху рідини. | ||
+ | Отже, для будь-яких живих перерізів стисливої рідини або газу в елементарній струминці справедливою є умова | ||
+ | ρ1u1dω1=ρ2u2dω2=…..=ρnundωn=const. (9) | ||
+ | Рівняння (9) називають рівнянням нерозривності або суцільності руху для елементарної струминки стисливої рідини або газу. Якщо ρ=const, тобто рідина нестислива, то рівняння нерозривності руху (9) можна записати у вигляді | ||
+ | u1dω1=u2dω2=…..=undωn=const. (10) | ||
+ | |||
+ | Цей вираз відображає властивість нестисливої рідини, тому його інколи називають рівнянням нестисливості рідини для елементарної струминки. | ||
+ | З (10) випливає, що площа живого перерізу елементарної струминки не може дорівнювати нулю, оскільки в такому разі швидкість у цьому перерізі струминки прямуватиме до нескінченості, що фізично неможливе. Тому елементарна струминка в потоці не може обриватися в середині рідини або закінчуватися вістрям. | ||
+ | |||
+ | |||
+ | |||
+ | Аналогічно викладеному вище можна одержати рівняння нерозривності руху для реального потоку якщо просумувати витрати в елементарних струминках в межах кожного живого перерізу окремо. У результаті для стисливої рідини або газу вздовж потоку маємо | ||
+ | ρ1V1ω1=ρ2V2ω2=…..=ρnVnωn=const, (11) | ||
+ | |||
+ | де Vi – середні швидкості у живих перерізах. | ||
+ | При стаціонарному русі рідини, а у деяких випадках і газів (при невеликих швидкостях), зміною питомої маси можна знехтувати, тобто прийняти ρ=const. | ||
+ | Тоді рівняння (11) можна переписати у вигляді | ||
+ | V1ω1=V2ω2=…..=Vnωn=const. (12) | ||
+ | Можна сказати, що рівняння (12) є аналітичним записом закону збереження маси в гідравлічній формі для потоку нестисливої рідини. Це і є рівняння нерозривності для потоку рідини, котре формулюється так: витрата рідини через довільний переріз потоку в усталеному русі є величиною сталою. З рівняння (12) для двох перерізів можна записати | ||
+ | V1/V2=ω2/ω1. (13) | ||
+ | Тобто середні швидкості потоку обернено пропорційні площам відповідних живих перерізів. | ||
Версія за 21:26, 24 травня 2011
В гідрогазодинаміці в багатьох випадках можна знехтувати стисливістю рідин і газів. Тому використовують єдиний підхід до вивчення їх поведінки, користуючись єдиним поняттям нестисливої рідини - суцільного середовища з однаковою в усіх точках густиною, яка не змінюється з часом. Це своєрідна модель ідеальної рідини, в якій не враховується наявне в рідині внутрішне тертя.
Спираючись на закон збереження маси, отримаємо рівняння нерозривності, яке замикає систему рівнянь Ейлера.
Припустимо, що рідина рухається без виникнення пустот. Виділимо елементарний об’єм.
[math]p\cdot V\cdot dx\cdot dy[/math] - маса рідини, яка витікає з грань [math]\textbf{\textit{xz}}[/math].
[math][\rho V+dy\cdot \frac{\partial(pV)}{dy}]dx\cdot dz[/math] - маса рідини, яка витікає з [math]\textbf{\textit{xz}}[/math]:
[math]\frac{\partial(\rho V)}{dy}[/math] - приріст [math]\textbf{\textit{pV}}[/math]
Загальний вигляд
Вздовж осі [math]\textbf{\textit{Oy}}[/math] маса рідини змінилася на величину:
[math]\begin{cases} \frac{\partial(\rho V)}{dy}dx\cdot dy\cdot dz\\ \frac{\partial(pW)}{dz}dx\cdot dy\cdot dz\\ \frac{\partial(\rho U)}{dx}dx\cdot dy\cdot dz\end{cases}[/math]
Приріст маси:
[math][\frac{\partial(\rho U)}{dx}+\frac{\partial(pV)}{dy}+\frac{\partial(\rho W)}{dz}]dx\cdot dy\cdot dz[/math]
З іншого боку, приріст маси може отриматись за рахунок змінної густини
[math]dm=-\frac{\partial \rho }{\partial t}dx\cdot dy\cdot dz[/math]
Кінцева формула
Отже, можна отримати рівняння нерозривності у одному з виглядів
[math]\frac{\partial(\rho U)}{dx}+\frac{\partial(\rho V)}{dy}+\frac{\partial(\rho W)}{dz}=-\frac{\partial \rho }{\partial t}[/math]
[math]\frac{\partial \rho }{\partial t} + div \rho V[/math]
за умови, що [math]p\neq const[/math].
Припустимо [math]p=const[/math], тоді рівняння нерозривності
[math]div \vec{V}=0[/math]
[math]\frac{\partial U}{\partial x}+\frac{\partial V}{\partial y}+\frac{\partial W}{\partial z}=0[/math]
Це рівняння доповнює систему рівнянь Ейлера до замкнутої системи чотирьох рівнянь відносно чотирьох невідомих функцій.
3 Рівняння нерозривності стаціонарного руху рідини в гідравлічній формі Розглянемо спочатку елементарну струминку . Відповідно до закону збереження маси можна стверджувати, що масова витрата через усякий живий переріз елементарної струминки є величиною сталою, тобто dm=uρdω=const. Цей висновок випливає з властивостей елементарної струминки: у протилежному випадку масова витрата повинна зростати або зменшуватись необмежено, а це суперечить умові стаціонарного руху рідини. Отже, для будь-яких живих перерізів стисливої рідини або газу в елементарній струминці справедливою є умова ρ1u1dω1=ρ2u2dω2=…..=ρnundωn=const. (9)
Рівняння (9) називають рівнянням нерозривності або суцільності руху для елементарної струминки стисливої рідини або газу. Якщо ρ=const, тобто рідина нестислива, то рівняння нерозривності руху (9) можна записати у вигляді u1dω1=u2dω2=…..=undωn=const. (10)
Цей вираз відображає властивість нестисливої рідини, тому його інколи називають рівнянням нестисливості рідини для елементарної струминки. З (10) випливає, що площа живого перерізу елементарної струминки не може дорівнювати нулю, оскільки в такому разі швидкість у цьому перерізі струминки прямуватиме до нескінченості, що фізично неможливе. Тому елементарна струминка в потоці не може обриватися в середині рідини або закінчуватися вістрям.
Аналогічно викладеному вище можна одержати рівняння нерозривності руху для реального потоку якщо просумувати витрати в елементарних струминках в межах кожного живого перерізу окремо. У результаті для стисливої рідини або газу вздовж потоку маємо ρ1V1ω1=ρ2V2ω2=…..=ρnVnωn=const, (11)
де Vi – середні швидкості у живих перерізах. При стаціонарному русі рідини, а у деяких випадках і газів (при невеликих швидкостях), зміною питомої маси можна знехтувати, тобто прийняти ρ=const. Тоді рівняння (11) можна переписати у вигляді V1ω1=V2ω2=…..=Vnωn=const. (12) Можна сказати, що рівняння (12) є аналітичним записом закону збереження маси в гідравлічній формі для потоку нестисливої рідини. Це і є рівняння нерозривності для потоку рідини, котре формулюється так: витрата рідини через довільний переріз потоку в усталеному русі є величиною сталою. З рівняння (12) для двох перерізів можна записати V1/V2=ω2/ω1. (13) Тобто середні швидкості потоку обернено пропорційні площам відповідних живих перерізів.
Література
Милн-Томсон Л. М. «Теоретическая гидродинамика». пер. з англ., М., 1964.
Б.Ф Левицький\Н.П.Лещій 1994р.