Відмінності між версіями «Дискретні розподіли»

(Вступ)
Рядок 22: Рядок 22:
 
<td> Залікова книжка </td><td> СН-10-055
 
<td> Залікова книжка </td><td> СН-10-055
 
</td></tr></table>
 
</td></tr></table>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
== Вступ ==
 
== Вступ ==
 
Нормальний закон розподілу стосується неперервних випадкових величин. Для дискретних величин він може застосовуватися лише за певних умов, зокрема при великому числі випробувань. Разом з тим число дискретних величин часто не може бути великим (обсяг вибірки невеликий), а крім того, на імовірність тієї чи іншої події (наслідку) впливають деякі обмеження.
 
Нормальний закон розподілу стосується неперервних випадкових величин. Для дискретних величин він може застосовуватися лише за певних умов, зокрема при великому числі випробувань. Разом з тим число дискретних величин часто не може бути великим (обсяг вибірки невеликий), а крім того, на імовірність тієї чи іншої події (наслідку) впливають деякі обмеження.

Версія за 18:47, 4 березня 2011

{{{img}}}
Імя Тарас
Прізвище Івасюк
По-батькові Анатолійович
Факультет ФІС
Група СН-51
Залікова книжка СН-10-055

Вступ

Нормальний закон розподілу стосується неперервних випадкових величин. Для дискретних величин він може застосовуватися лише за певних умов, зокрема при великому числі випробувань. Разом з тим число дискретних величин часто не може бути великим (обсяг вибірки невеликий), а крім того, на імовірність тієї чи іншої події (наслідку) впливають деякі обмеження.

Біномінальний розподіл

У робочих процесах АПК, особливо біологічних, найчастіше користуються біноміальним розподілом дискретних величин. Він виникає тоді, коли при будь-якому випробуванні у серії має відбутися одна подія або у деякому розумінні їй протилежна. Вивчення цього розподілу розпочалося з відомої гри в підкидування монет, тому появу однієї події часто називають сприятливим наслідком або успіхом (наприклад, гербом зверху на монеті, що впала, для гравця, який поставив на герб), а протилежної — несприятливим наслідком або невдачею. Ці терміни зберігають свій прямий смисл, наприклад при випробуванні нового препарату на тваринах з можливими наслідками виживає—не виживає.


В основі біноміального закону розподілу лежить загальна схема, названа ім'ям відомого швейцарського вченого математика Якоба Бернуллі. Нехай випадкова величина х набуває тільки двох значень: 1 та 0, причому результати кожного випробування не залежать одні від одних. Ця вимога задовольняється при підкиданні правильної монети. У випадку виймання навздогад білих або чорних куль з урни вона задовольняється за умови, якщо перед черговим випробуванням опускати раніше вийняті кулю назад в урну. Така схема випробувань лежить в основі широкого кола експериментів, наслідки яких належать двом взаємовиключаючим класам, а розподіл змінної х, яка може набувати тільки двох значень (х = 1 з імовірністю р або х = 0 з імовірністю q = 1 – р), називається розподілом Бернуллі. Якщо нас цікавить, яка імовірність сприятливого наслідку в серії з N дослідів, то треба врахувати, що число цих наслідків k може набувати будь-яких цілих значень від 0 до N, а число протилежних наслідків дорівнює N – k. При цьому імовірність р (N, k) обчислюється за біноміальним законом

[math]p(N,k)=C_N^kp^Nq^{N-1},[/math]


де [math]C_N^k=\frac{N!}{k!(N-k)!}[/math] - біноміальний коефіцієнт.


Параметри N та р повністю визначають біноміальний розподіл. На рисунку 1 зображено полігони p(N,k) для N=20 та п'яти значень p.

Рисунок 1.jpg

Звідси випливає, що біноміальний розподіл є симетричним тілбки при p=q=0,5. При цьому рівноймовірність наслідківє найчастішою в робочих процесах. При обчисленні теоретичного біноміального розподілу з відомими N та р використовують ту обставину, що р(N, k) є членами в розкладанні бінома Ньютона:

[math]\sum_{k=0}^Np(n,k)=\sum_{k=0}^NC_np^Nq^{N-1}=(p+q)^N=C_n^0p^Nq^0+C_n^1p^{N-1}q^1+...+C_N^Np^0q^N.[/math]

Біноміальні коефіцієнти Сn визначають за допомогою трикутника Паскаля, в якому вони займають рядок з номером N, наприклад для N в межах першого десятка:

Рисунок 2.jpg


Для обчислення р(N, k), починаючи з р(N, 0), можна користуватися також рекурентною формулою:

[math]\frac{p(N,k)}{p(N,k-1)}=\frac{(N-k+1)p}{kq}.[/math]

Список використаних джерел

1. Математичне планування експериментів в АПК / В. О. Аністратенко, В. Г. Федоров.-К.:Вища школа,1993.-374с.