Відмінності між версіями «Потенціальна течія»
Olenka (обговорення • внесок) |
Olenka (обговорення • внесок) |
||
Рядок 1: | Рядок 1: | ||
У гідродинаміці потенціальний потік характеризується відсутністю вихрового руху, де швидкість визначається як функція одного аргументу – потенціалу швидкості. Поступальний рух рідини в якому елементарні частинки не мають обертальних рухів називають безвихровим (потенціальним) і описують потенціалом швидкості. Умовою безвихрового потенціального потоку є rot V=0 – ротор поля в будь-якій точці дорівнює нулю. | У гідродинаміці потенціальний потік характеризується відсутністю вихрового руху, де швидкість визначається як функція одного аргументу – потенціалу швидкості. Поступальний рух рідини в якому елементарні частинки не мають обертальних рухів називають безвихровим (потенціальним) і описують потенціалом швидкості. Умовою безвихрового потенціального потоку є rot V=0 – ротор поля в будь-якій точці дорівнює нулю. | ||
Безвихрового руху в природі не буває оскільки при русі рідини вздовж твердих кордонів утворюються вихори. Якщо вважати, що вся завихреність в локальних зонах то, можна припустити, що в решті потоку рух буде безвихровим. | Безвихрового руху в природі не буває оскільки при русі рідини вздовж твердих кордонів утворюються вихори. Якщо вважати, що вся завихреність в локальних зонах то, можна припустити, що в решті потоку рух буде безвихровим. | ||
+ | |||
Коли ефект в’язкості є незначним, наприклад при великих числах Рейнольдса, де домінує конвективний перенос імпульсу, коли здійснюється аналіз зовнішніх потоків над твердою поверхнею і потік далі залишається ламінарним, коли прикордонний шар з твердим тілом дуже тонкий у розрахунках використовують явище Потенціального потоку. | Коли ефект в’язкості є незначним, наприклад при великих числах Рейнольдса, де домінує конвективний перенос імпульсу, коли здійснюється аналіз зовнішніх потоків над твердою поверхнею і потік далі залишається ламінарним, коли прикордонний шар з твердим тілом дуже тонкий у розрахунках використовують явище Потенціального потоку. | ||
+ | |||
По своїй суті явище Потенціального потоку є ідеалізацією руху рідини але в окремих випадках це припущення має важливе практичне значення і значно полегшує розрахунок основних характеристик руху. | По своїй суті явище Потенціального потоку є ідеалізацією руху рідини але в окремих випадках це припущення має важливе практичне значення і значно полегшує розрахунок основних характеристик руху. | ||
Рядок 9: | Рядок 11: | ||
Поняття потенціалу швидкості було введено Л.Ейлером. | Поняття потенціалу швидкості було введено Л.Ейлером. | ||
При безвихровому русі | При безвихровому русі | ||
− | <math>\[{\omega _{\rm{x}}} = {\omega _{\rm{y}}} = {\omega _{\rm{z}}} = 0\]</math> | + | <math>\[{\omega _{\rm{x}}} = {\omega _{\rm{y}}} = {\omega _{\rm{z}}} = 0\]</math>, (1) |
+ | де ω – кутова швидкість; <math>\[{\omega _{\rm{x}}},{\rm{ }}{\omega _{\rm{y}}},{\rm{ }}{\omega _{\rm{z}}}\]</math> – проекції вектора кутової швидкості. | ||
+ | |||
+ | Відомо що при вихровому русі частинка рідини, так само як і тверде тіло, обертається з кутовою швидкістю <math>\[\omega {\rm{ }}({\omega _{\rm{x}}},{\rm{ }}{\omega _{\rm{y}}},{\rm{ }}{\omega _{\rm{z}}})\]</math> відносно деякої миттєвої осі. Величини <math>\[{\omega _{\rm{x}}},{\rm{ }}{\omega _{\rm{y}}},{\rm{ }}{\omega _{\rm{z}}}\]</math> виражають міру обертання рідини і становлять компоненти так званої вихрової швидкості. | ||
+ | |||
+ | Якщо б частинка була твердою і оберталась довкола миттєвої осі з кутовою швидкістю ω то з теоретичної механіки відомо, що проекції вектора кутової швидкості становили б | ||
+ | |||
+ | <math>${\omega _x} = \frac{1}{2}\left( {\frac{{\partial {u_z}}}{{\partial y}} - \frac{{\partial {u_y}}}{{\partial z}}} \right)$</math>; <math>${\omega _y} = \frac{1}{2}\left( {\frac{{\partial {u_x}}}{{\partial z}} - \frac{{\partial {u_z}}}{{\partial x}}} \right)$</math>; <math>${\omega _z} = \frac{1}{2}\left( {\frac{{\partial {u_y}}}{{\partial x}} - \frac{{\partial {u_x}}}{{\partial y}}} \right)$</math>, (2) | ||
+ | |||
+ | де <math>\[{\rm{u\_x}}{\rm{,u\_y}}{\rm{,u\_z}}\]</math> – компоненти швидкості зафіксованої частинки рідини. |
Версія за 01:38, 3 червня 2013
У гідродинаміці потенціальний потік характеризується відсутністю вихрового руху, де швидкість визначається як функція одного аргументу – потенціалу швидкості. Поступальний рух рідини в якому елементарні частинки не мають обертальних рухів називають безвихровим (потенціальним) і описують потенціалом швидкості. Умовою безвихрового потенціального потоку є rot V=0 – ротор поля в будь-якій точці дорівнює нулю. Безвихрового руху в природі не буває оскільки при русі рідини вздовж твердих кордонів утворюються вихори. Якщо вважати, що вся завихреність в локальних зонах то, можна припустити, що в решті потоку рух буде безвихровим.
Коли ефект в’язкості є незначним, наприклад при великих числах Рейнольдса, де домінує конвективний перенос імпульсу, коли здійснюється аналіз зовнішніх потоків над твердою поверхнею і потік далі залишається ламінарним, коли прикордонний шар з твердим тілом дуже тонкий у розрахунках використовують явище Потенціального потоку.
По своїй суті явище Потенціального потоку є ідеалізацією руху рідини але в окремих випадках це припущення має важливе практичне значення і значно полегшує розрахунок основних характеристик руху.
Потенціал швидкостей
Поняття потенціалу швидкості було введено Л.Ейлером. При безвихровому русі [math]{\omega _{\rm{x}}} = {\omega _{\rm{y}}} = {\omega _{\rm{z}}} = 0[/math], (1) де ω – кутова швидкість; [math]{\omega _{\rm{x}}},{\rm{ }}{\omega _{\rm{y}}},{\rm{ }}{\omega _{\rm{z}}}[/math] – проекції вектора кутової швидкості.
Відомо що при вихровому русі частинка рідини, так само як і тверде тіло, обертається з кутовою швидкістю [math]\omega {\rm{ }}({\omega _{\rm{x}}},{\rm{ }}{\omega _{\rm{y}}},{\rm{ }}{\omega _{\rm{z}}})[/math] відносно деякої миттєвої осі. Величини [math]{\omega _{\rm{x}}},{\rm{ }}{\omega _{\rm{y}}},{\rm{ }}{\omega _{\rm{z}}}[/math] виражають міру обертання рідини і становлять компоненти так званої вихрової швидкості.
Якщо б частинка була твердою і оберталась довкола миттєвої осі з кутовою швидкістю ω то з теоретичної механіки відомо, що проекції вектора кутової швидкості становили б
[math]{\omega _x} = \frac{1}{2}\left( {\frac{{\partial {u_z}}}{{\partial y}} - \frac{{\partial {u_y}}}{{\partial z}}} \right)[/math]; [math]{\omega _y} = \frac{1}{2}\left( {\frac{{\partial {u_x}}}{{\partial z}} - \frac{{\partial {u_z}}}{{\partial x}}} \right)[/math]; [math]{\omega _z} = \frac{1}{2}\left( {\frac{{\partial {u_y}}}{{\partial x}} - \frac{{\partial {u_x}}}{{\partial y}}} \right)[/math], (2)
де [math]{\rm{u\_x}}{\rm{,u\_y}}{\rm{,u\_z}}[/math] – компоненти швидкості зафіксованої частинки рідини.