Відмінності між версіями «Гідроциліндри»
Рядок 7: | Рядок 7: | ||
Перший телескопічний гідроциліндр винайшов і запатентував ще в 19 столітті Джозеф Брама, а в даний час працюють на цьому принципі автомобільні домкрати, які знає практично кожен водій. Основним видом гідроциліндра є гідроциліндр (пневмоциліндр) поршневого типу. Часто до групи гідроциліндрів відносять, також, плунжерні, мембранні і сильфоннігідро- (пневмо-) двигуни. | Перший телескопічний гідроциліндр винайшов і запатентував ще в 19 столітті Джозеф Брама, а в даний час працюють на цьому принципі автомобільні домкрати, які знає практично кожен водій. Основним видом гідроциліндра є гідроциліндр (пневмоциліндр) поршневого типу. Часто до групи гідроциліндрів відносять, також, плунжерні, мембранні і сильфоннігідро- (пневмо-) двигуни. | ||
− | == Гідроциліндри односторонньої дії | + | == Види гідроциліндрів == |
+ | |||
+ | '''Гідроциліндри односторонньої дії''' | ||
[[Зображення: Einfachwirkender_Zylinder_funktionsprinziep.gif | thumb | right |Гідроциліндр односторонньої дії]] | [[Зображення: Einfachwirkender_Zylinder_funktionsprinziep.gif | thumb | right |Гідроциліндр односторонньої дії]] | ||
− | |||
Висунення штока здійснюється за рахунок створення тиску в поршневій порожнині при подачі робочої рідини, а повернення в початкове положення - пружиною або гравітаційною силою. | Висунення штока здійснюється за рахунок створення тиску в поршневій порожнині при подачі робочої рідини, а повернення в початкове положення - пружиною або гравітаційною силою. | ||
Зусилля, що створюється гідроциліндрами з пружиною, за інших рівних умов менше від зусилля, створюваного гідроциліндрами двосторонньої дії, за рахунок того, що при прямому ході штока необхідно долати зусилля стиснутої пружини. Пружина виконує тут роль поворотного елементу. У тих випадках, коли повернення здійснюється за рахунок дії приводимого механізму, іншого гідроциліндра, або сили тяжіння піднятого вантажу - гідроциліндр може не мати зворотної пружини через відсутність необхідності. | Зусилля, що створюється гідроциліндрами з пружиною, за інших рівних умов менше від зусилля, створюваного гідроциліндрами двосторонньої дії, за рахунок того, що при прямому ході штока необхідно долати зусилля стиснутої пружини. Пружина виконує тут роль поворотного елементу. У тих випадках, коли повернення здійснюється за рахунок дії приводимого механізму, іншого гідроциліндра, або сили тяжіння піднятого вантажу - гідроциліндр може не мати зворотної пружини через відсутність необхідності. | ||
− | + | '''Гідроциліндри двосторонньої дії''' | |
− | |||
[[Зображення: Doppelwirkender_Zylinder_Funktionsprinziep.gif | thumb | right |Гідроциліндр двосторонньої дії]] | [[Зображення: Doppelwirkender_Zylinder_Funktionsprinziep.gif | thumb | right |Гідроциліндр двосторонньої дії]] |
Версія за 17:17, 22 листопада 2012
Гідроцилі́ндр (Пневмоциліндр), (рос.гидроцилиндр (пневмоцилиндр); англ. hydraulic cylinder; нім. Zylinder m) - об'ємний гідродвигун (пневмодвигун) зі зворотно-поступальним рухом вихідної ланки, який призначений для трансформації енергії потоку рідини в рух виконавчого механізму.
Перший телескопічний гідроциліндр винайшов і запатентував ще в 19 столітті Джозеф Брама, а в даний час працюють на цьому принципі автомобільні домкрати, які знає практично кожен водій. Основним видом гідроциліндра є гідроциліндр (пневмоциліндр) поршневого типу. Часто до групи гідроциліндрів відносять, також, плунжерні, мембранні і сильфоннігідро- (пневмо-) двигуни.
Види гідроциліндрів
Гідроциліндри односторонньої дії
Висунення штока здійснюється за рахунок створення тиску в поршневій порожнині при подачі робочої рідини, а повернення в початкове положення - пружиною або гравітаційною силою. Зусилля, що створюється гідроциліндрами з пружиною, за інших рівних умов менше від зусилля, створюваного гідроциліндрами двосторонньої дії, за рахунок того, що при прямому ході штока необхідно долати зусилля стиснутої пружини. Пружина виконує тут роль поворотного елементу. У тих випадках, коли повернення здійснюється за рахунок дії приводимого механізму, іншого гідроциліндра, або сили тяжіння піднятого вантажу - гідроциліндр може не мати зворотної пружини через відсутність необхідності.
Гідроциліндри двосторонньої дії
Найчастіше використовують поршневі гідроциліндри з двостороннім типом дії, у яких односторонній шток. Переміщення штока може бути направлено в дві сторони, але це залежить від того, де зараз нагнітається робоча рідина. Найчастіше в цей момент, друга порожнина з'єднана із зливною лінією. Основне їх застосування - це поворот робочого устаткування, між іншим рухомим елементом у даному випадку виступає сам корпус гідроциліндра.
Як при прямому, так і при зворотному ході поршня, зусилля на штоку гідроциліндра створюється за рахунок створення тиску, відповідно, у поршневій або штоковій порожнині.
Слід мати на увазі, що при прямому ході поршня зусилля на штоку дещо більше, а швидкість руху штока менша, ніж при зворотному ході - за рахунок різниці в площі, до якої прикладений тиск робочої рідини (ефективна площа). Такі гідроциліндри здійснюють, наприклад, підйом-опускання робочих органів бульдозера.
Телескопічні гідроциліндри
Називаються так завдяки конструктивній схожості з телескопом або підзорної трубою. Такі гідроциліндри застосовуються у тому випадку, якщо при невеликих розмірах самого гідроциліндра необхідно забезпечити великий хід штока. Конструктивно являють собою кілька циліндрів, вставлених один в одного таким чином, що корпус одного циліндра є штоком іншого. Вони здійснюють, наприклад, підйом-опускання кузовів в багатьох самоскидах.
Мембранні гідроциліндри
Мембранний пневмоциліндр: 1-Диск мембрани; 2-Робоча камера; 3-Корпус; 4-Шток; 5-Пружина Мембранні пневмоциліндри також належать до пневмодвигунів дискретної дії з лінійним зворотно-поступальним рухом вихідної ланки - штока. У порівнянні з поршневими пневмоциліндрами вони простіші у виготовленні через відсутність точних контактних поверхонь, мають високу герметичність робочої камери, не потребують змащення і якісного очищення стиснутого повітря. Проте їм притаманні недоліки: обмеженість довжини ходу, змінне вихідне зусилля, що залежить від прогину мембрани. Найпоширеніші мембранні пневмоциліндри односторонньої дії із зворотною пружиною. Використовуються в обладнанні, де вимагаються значні зусилля при відносно малих переміщеннях (затискування, фіксація, перемикання, гальмування тощо). У мембранному пневмоциліндрі односторонньої дії плоска мембрана 1 защемлена по контуру між корпусом і кришкою 3. Внутрішній діаметр защемлення D називають діаметром заправлення мембрани. Оскільки не все зусилля від тиску повітря у робочій камері передається штоку, так як частина мембрани контактує з корпусом, то його розраховують за ефективною площеюFe, яка є меншою від геометричної. При малих прогинах мембрани
де d - діаметр опорного диска мембрани на штоці.
Диференціальні гідроциліндри
"Звичайне" підключення поршневих гідроциліндрів двосторонньої дії передбачає почергове підключення порожнин гідроциліндра до нагнітальної та зливної магістралей розподільником 4/2 або 4/3, що забезпечує рух поршня за рахунок різниці тисків. Співвідношення швидкостей руху, а також зусиль при прямому і зворотному ході, різні, і пропорційні співвідношенням площ поршня. Між швидкістю і зусиллям встановлюється залежність: більша швидкість - менше зусилля, і навпаки. "Кільцева", або "диференціальна" схема підключення. При робочому ході (висуванні штока) рідина від насоса подається в поршневу порожнину, що витісняється-таки рідину з штоковой порожнини, за рахунок кільцевого підключення (розподільник 3/2), спрямовується не у гідробак, а подається також в поршневу порожнину. В результаті висунення штока відбувається набагато швидше, ніж у звичайній схемі підключення (розподільник 4/2 або 4/3). Зворотний хід (втягування штока) відбувається при подачі рідини тільки в штоковую порожнину, поршнева з'єднана з гідробаком. При використанні гідроциліндра із співвідношенням площ поршня 2:1 (в деяких джерелах саме такі гідроциліндри називаються диференціальними) така схема дозволяє отримати рівні швидкості і рівні зусилля прямого і зворотного ходів, що для гідроциліндрів з однобічним штоком без регулювання або додаткових елементів отримати неможливо.
Область застосування
Якщо розрізняти їх по областях застосування, то фактично їх можна розділити на три основні групи: - Приводять в дію будь-які важільні механізми робочого обладнання (екскаватори, навантажувачі, лісонавантажувача) - Переміщення робочих органів, які в процесі руху здійснюють корисну роботу (автогрейдери, бульдозери) - Установки всієї машини чи якихось окремих органів цієї машини, в стійке положення або визначено задане положення
Гідроциліндри широко застосовують у всіх галузях техніки, де використовують об'ємний гідропривід. Наприклад, в будівельно-дорожніх, землерийних, підйомно-транспортних машинах, в авіації і космонавтиці, а також в технологічному обладнанні - металорізальних верстатах, ковальсько-пресових машинах. Управління рухом поршня і штока гідроциліндра здійснюється з допомогою гідророзподільника, або за допомогою засобів регулювання гідроприводу.
Враховуючи той факт, що в даний час пред'являються все більш жорсткі якісні вимоги до разлічномугідравліческому обладнанню, варто відзначити ті особливості, які притаманні якісним гидроцилиндрам. В першу чергу, це висока герметичність деталей і ККД, прагнучий до 100%. Важливим якістю вважається плавність ходу штока гідроциліндра, а також невисокий рівень шуму. І звичайно, дійсно якісний гідроциліндр має тривалий термін експлуатації і характеризується високою експлуатаційною надійністю.
Вимоги до гідроциліндрів
Ущільнення гідроциліндрів зобов'язані бути дуже герметичними і зручними у випадках монтажу, а також вони повинні практично не давати тертя, бути маленького розміру і бути повністю сумісні з робочою рідиною. Як у будь-якого механізму, у них є і нерухомі частини, як правило, це невеликі кільця з гуми у яких круглий перетин. Наприклад, в рухомому з'єднанні між поршнем і штоком використовують гумові та гумово-тканинні манжети, їх встановлюють разом з кільцями, зробленими з фторопласту. Фторопластові кільця не дають видавлюватися манжетам з посадочних канавок, коли на них впливає тиску робочої рідини. Для звичайних умов роботи поршневе ущільнення облаштовано фігурним гумовотканинним кільцем, у якого з боків встановлюються фасонні кільця, що заважають процесу видавлювання, а також до них примикають опорно-направляючі кільця, які виготовляються з полімеру (зазвичай береться скло-наповнений полімер). Щоб ущільнити шток використовується спеціальна система з компенсаційного кільця, і спеціального гумовотканинного кільця, яке поєднане з кільцем, протистояли видавлювання і грязес'емніка, який виготовляється з гуми. Грязезнімач також може бути виготовлений з поліуретану з металевим армуванням. Ці ущільнювальні системи, дуже сильно підвищують якість агрегату, в теж час вони відповідають всім вимогам експлуатації. Деякі деталі механізму, в такому ущільненні можуть послужити більше двадцяти років.