Відмінності між версіями «Розкладання дисперсії на складові»

Рядок 44: Рядок 44:
  
 
<math> = \sum_{i=1}^m n \overline{y_i} \overline{y_i} - \sum_{i=1}^m n \overline{y_i} \overline{y_i} - m n \overline{y} \overline{y} + m n \overline{y} \overline{y}= 0 </math>
 
<math> = \sum_{i=1}^m n \overline{y_i} \overline{y_i} - \sum_{i=1}^m n \overline{y_i} \overline{y_i} - m n \overline{y} \overline{y} + m n \overline{y} \overline{y}= 0 </math>
 +
 +
Отже,
 +
 +
<math> \sum_{j=1}^n \sum_{i=1}^m (y_{ij} - \overline{y_i})^2 = \sum_{j=1}^n \sum_{i=1}^m (y_{ij} - \overline{y})^2 + \sum_{j=1}^n \sum_{i=1}^m (\overline{y_i} - \overline{y})^2 </math>,
 +
 +
що й треба було довести, оскільки
 +
<math> S^2_y  \approx  \sum  \sum (y_{ij} - \overline{y})^2 </math>;    <math> S^2_{y/x}  \tilde  \sum  \sum (y_{ij} - \overline{y_i})^2 </math>;    <math> S^2_{y/z}  \approx  \sum  \sum (\overline{y_i} - \overline{y})^2 </math>.
 +
 +
Другий доданок в здобутому результаті містить тільки одну змінну <math> y_i </math>, яка підсумовується за <math> m </math> . Тому підсумовування за змінною <math> j</math> сталою <math> (\overline{y_i} - \overline{y})^2 </math> рівнозначне помноженню на <math> n </math>, тобто <math> \sum_{j=1}^n = n </math>, тоді
 +
<math> \sum_{j=1}^n \sum_{i=1}^m = (\overline{y_i} - \overline{y})^2 = \sum_{i=1}^m  n (\overline{y_i} - \overline{y})^2 </math>.
 +
 +
Така сума називається зваженою, оскільки <math>n</math> у загальному випадку для кожного <math>i</math> може бути різними.
 +
 +
При використанні дисперсійного аналізу запишемо останні формули через вихідні значення <math>y_{ij}</math>:
 +
<math> \sum \sum (y_{ij} - \overline{y})^2 = \sum \sum y^2_{ij} + \sum \sum \overline{y^2} + 2 \sum \sum y_{ij} \overline{y} = </math>
 +
<math> \sum \sum y_{ij}^2 + m n \overline{y^2} - 2 m n y^2 = \sum \sum y^2_{ij} - m n \overline{y^2} = </math>
 +
<math> \sum \sum y_{ij}^2 - \frac{\mathrm mn}{\mathrm m^2 n^2}\, (\sum \sum y_{ij})^2 = \sum_{j=1}^n \sum_{i=1}^m y^2_{ij} - \frac{\mathrm 1}{\mathrm mn}\, (\sum \sum y_{ij})^2 </math>;
 +
<math> \sum \sum (\overline{y_i} - \overline{y})^2 - \sum^n \sum^m \overline{y^2_i} + \sum^n \sum^m \overline{y^2} - 2\sum^n \sum^m \overline{y_i} \overline{y} = </math>
 +
<math> \sum^n \sum^m y^2_i + \frac{\mathrm mn}{\mathrm m^2 n^2}\, (\sum \sum y_{ij})^2 - 2 m \overline{y} n \overline{y} = </math>
 +
<math> \sum^2 n \frac{\mathrm 1}{\mathrm n^2}\, (\sum^n y_{ij})^2 + \frac{\mathrm 1}{\mathrm mn}\, (\sum \sum y_{ij})^2 - 2 \frac{\mathrm 1}{\mathrm mn}\, (\sum \sum y_{ij})^2 = </math>
 +
<math> = \frac{\mathrm 1}{\mathrm n}\, \sum^m (\sum^n y_{ij})^2 - \frac{\mathrm 1}{\mathrm mn}\, (\sum \sum y_{ij})^2 </math>;
 +
 +
<math> \sum \sum (y_{ij} - \overline{y_i})^2 = \sum \sum y^2_{ij} + \sum \sum \overline{y^2_i} - 2 \sum \sum y_{ij} \overline{y_i} = </math>
 +
<math> \sum^m \sum^n y^2_{ij} + n\sum^m y^2_i - 2\sum^m \sum^n y_{ij} \frac{\mathrm 1}{\mathrm n}\, \sum^n y_{ij} = </math>
 +
<math>\sum \sum y^2_{ij} +n \sum^m \frac{\mathrm 1}{\mathrm n^2}\, (\sum^n y_{ij})^2 - 2\sum^m \frac{\mathrm 1}{\mathrm n}\, (\sum^n y_{ij})^2 = </math>
 +
<math> \sum \sum y^2_{ij} - \frac{\mathrm 1}{\mathrm n}\, \sum^m (\sum^n y_{ij})^2 </math>.
 +
 +
Ці формули є робочими при одно факторному дисперсійному аналізі. Якщо розглядати дисперсії не функції, а не залежного параметра, а замість <math>y</math> покласти <math>x</math>, то структура формул зберігатиметься.

Версія за 12:18, 13 березня 2012

Blue check.png Дана стаття являється неперевіреним навчальним завданням.
Студент: Пріян Н.
Викладач: Назаревич О. Б.
Термін до: 14 березня 2012

До вказаного терміну стаття не повинна редагуватися іншими учасниками проекту. Після завершення терміну виконання будь-який учасник може вільно редагувати дану статтю і витерти дане попередження, що вводиться за допомогою шаблону.



Розглянемо задачу розкладання дисперсії як характеристики коливальності (розкиду, розсіювання, зміни) на простому абстрактному прикладі.

Нехай вимірювана величина [math]y[/math] набувала в [math]N[/math] дослідах таких значень [math]y_1,y_2,y_3, ..., y_k, ..., y_N[/math], які характеризуються деякими середніми [math]\overline{y}[/math] та оцінкою дисперсії [math]S_y^2[/math]. Відкладемо результати вимірювань [math]y[/math] на осі ординат (рис. 1), а вісь абсцис для одного із випливаючих на [math]y[/math] фаторів [math]x[/math].

Відрізком довжиною [math]S_y[/math] зобразимо показник загального розкиду значення [math]y[/math] (скористатися дисперсією [math]S_y^2[/math] не можна, оскільки її розмірність не збігається з розмірністю [math]y[/math]). Припустимо, що одночасно з [math]y[/math] реєструвалася величина певного фактора, який за припущенням впливає на [math]y[/math]. Цей фактор в усіх дослідах набував лише трьох значень. Результати сумісних вимірювань пар значень [math]y[/math] і [math]x[/math] зображено на рис. 2. помітна загальна тенденція зростання [math]y[/math] зі збільшенням [math]x[/math]. Однак говорять лише про зміни [math]y[/math] у середньому. оскільки в окремих випадках спостерігається , наприклад [math]y_1\gt y_5[/math], хоча [math]y_5[/math] відповідає більшому [math]x[/math]. Ішими словами, кожному [math]x_i[/math] відповідає середнє [math]y_i[/math], яке можна розрахувати у даному випадку за чотирма значеннями [math]y[/math]. Умовні середні [math]y_i[/math] зображено на рис. 3. Розглядаючи [math]\overline{y_i}[/math] як самостійні значення, говорять про їх розкид відносно загального середнього [math]\overline{y_i}[/math]. Охарактеризуємо цей розкид величиною [math]S^2_{y/x}[/math], яка при певному числі дослідів (в даному випадку 3) залежить від суми квадратів відхилень умовних середніх [math]\overline{y_i}[/math] від загального середнього [math]\overline{y}[/math].

Природно, що від того, наскільки зміни [math]x[/math] впливають на середні зміни [math]y[/math], залежать значення [math]S^2_{y/x}[/math] і показник загального розкиду [math]S^2_y[/math]. Зазначимо, що при одному й тому ж значенні [math]x[/math] в чотирьох дослідах дістали різні значення [math]y[/math] (див. рис. 2). Наявність даного розкиду при фіксованому значенні фактора [math]x[/math] пояснюється діянням невраховуваних факторів [math]z[/math], тобто різними випадковими причинами. Не виділяючи будь-яку з них, охарактеризуємо сумарний ефект від них залишковою дисперсією [math]S^2_{y/z}[/math], яка, представляючи розкид результатів вимірювань [math]y[/math] відносно [math]\overline{y}[/math], залежить від суми квадратів відхилень [math]y[/math], виміряних при кожному значенні [math]x[/math], від відповідних умовних середніх [math]\overline{y_i}[/math]. На рис. 3 відрізками зображено показник розкиду для кожного [math]x[/math], а також показник розкиду [math]S_{y/x}[/math] середніх значень [math]\overline{y_i}[/math].

Очевидно, що, коли усунути вплив невраховуваних факторів, розкид [math]y[/math] при фіксованому [math]x[/math] не спостерігатиметься і загальний розкид [math]y[/math] визначатиметься тільки діяннями [math]x[/math] (див. рис. 4). З іншого боку, якби вплив фактора [math]x[/math] на [math]y[/math] був відсутній, а випадкові причини виявляли своє діяння (див. рис. 5), то загальний розкид [math]y[/math] визначався б тільки ними і характеризувався лише залишковою дисперсією від діяння невраховуваних факторів.

Детально розглянемо основні принципи сучасного експерименту: рандомізацію, багатофакторність, оптимізацію та автоматизацію. Пояснимо перший з них. Дисперсійний аналіз стає об’єктивним інструментом дослідження лише при умові, що кожне значення змінної вибрано з генеральної сукупності випадковим чином. Відбір випадкових значень змінної, який забезпечує однакову імовірність потрапити до вибірки будь-якого з них для всієї генеральної сукупності, називається рандомізацією (від англійського random – вибраний навмання). У біометрії це слово прийнято записувати і вимовляти як рендомізація. Щоб забезпечити однакову імовірність для будь-якого члена генеральної сукупності, найчастіше користуються таблицею випадкових чисел.

Таким чином, при сумісності діяння фактора [math]x[/math] та випадкових причин [math]z[/math] наступною буде рівність [math]S^2= S^2_{y/x}+ S^2_{y/z}[/math], яка і виражає властивість адитивної дисперсії.

Зазначимо, що ця формула правильна лише при незалежних (некорельованих) факторах, які впливають на [math]y[/math]. У противному разі вона ускладнюється: [math]S^2= S^2_{y/x} + S^2_{y/z} - 2 S_{y/x} S_{y/z} r_{xz}[/math], де [math]r_{xz}[/math] - коефіцієнт кореляції.

Формула адитивності дисперсії є основною всього дисперсійного аналізу. Її застосування часто зустрічається з боку експерименту внутрішній опір. Оскільки при всій своїй простоті вона не є очевидною. Тому, перш ніж дістати на основі цієї формули розрахункові рівняння, доведемо її правильність. Для цього скористаємось формальним перетворенням суми квадратів відхилень від загального середнього: [math]\sum_{j=1}^n \sum_{i=1}^m (y_{ij} - \overline{y})^2 = \sum_{j=1}^n \sum_{i=1}^m (y_{ij} - \overline{y_i} + \overline{y_j} + \overline{y})^2 + \sum_{j=1}^n \sum_{i=1}^m [(y_{ij} - \overline{y_i}) + (\overline{y_i} - \overline{y})]^2 =[/math]

[math]= \sum_{j=1}^n \sum_{i=1}^m (y_{ij} - \overline{y_i})^2 + \sum_{j=1}^n \sum_{i=1}^m (\overline{y_i} - \overline{y})^2 + 2\sum_{j=1}^n \sum_{i=1}^m (y_{ij} - \overline{y_i})(\overline{y_i}-\overline{y})[/math].

Враховуючи, що [math]\overline{y_i} = \frac{\mathrm 1}{\mathrm n}\, \sum_{j=1}^n y_{ij}[/math] ;

[math]\overline{y} = \frac{\mathrm 1}{\mathrm mn}\, \sum_{j=1}^n \sum_{i=1}^m y_ij = \frac{\mathrm 1}{\mathrm m}\, \sum_{i=1}^m \frac{\mathrm 1}{\mathrm n}\, \sum_{j=1}^n y_{ij} = \frac{\mathrm 1}{\mathrm m}\, \sum_{i=1}^m \overline{y_i}[/math];

[math]\sum_{j=1}^n \overline{y_i} = n \overline{y_i}[/math] ; [math]\sum_{j=1}^n \overline{y} = n \overline{y}[/math] ,

покажемо, як останній доданок при розкладанні перетворюється в нуль:

[math]\sum_{j=1}^n \sum_{i=1}^m (y_{ij} - \overline{y_i})(\overline{y_i}-\overline{y}) = \sum_{j=1}^n \sum_{i=1}^m y_{ij}\overline{y_i} - \sum_{j=1}^n \sum_{i=1}^m \overline{y_i} \overline{y_i} -[/math]

[math]- \sum_{j=1}^n \sum_{i=1}^m y_{ij} \overline{y} + \sum_{j=1}^n \sum_{i=1}^m \overline{y_i} \overline{y} = \sum_{i=1}^m \overline{y_i} n \frac{\mathrm 1}{\mathrm n}\, \sum_{j=1}^n y_{ij}-[/math]

[math]- \sum_{i=1}^m \overline{y_i} \sum_{j=1}^n \overline{y_i} - mn \frac{\mathrm 1}{\mathrm mn}\, \sum_{j=1}^n \sum_{i=1}^m y_{ij} y + m \frac{\mathrm 1}{\mathrm m}\, \sum_{i=1}^m y_i \sum_{j=1}^n \overline{y} =[/math]

[math]= \sum_{i=1}^m n \overline{y_i} \overline{y_i} - \sum_{i=1}^m n \overline{y_i} \overline{y_i} - m n \overline{y} \overline{y} + m n \overline{y} \overline{y}= 0[/math]

Отже,

[math]\sum_{j=1}^n \sum_{i=1}^m (y_{ij} - \overline{y_i})^2 = \sum_{j=1}^n \sum_{i=1}^m (y_{ij} - \overline{y})^2 + \sum_{j=1}^n \sum_{i=1}^m (\overline{y_i} - \overline{y})^2[/math],

що й треба було довести, оскільки [math]S^2_y \approx \sum \sum (y_{ij} - \overline{y})^2[/math]; [math]S^2_{y/x} \tilde \sum \sum (y_{ij} - \overline{y_i})^2[/math]; [math]S^2_{y/z} \approx \sum \sum (\overline{y_i} - \overline{y})^2[/math].

Другий доданок в здобутому результаті містить тільки одну змінну [math]y_i[/math], яка підсумовується за [math]m[/math] . Тому підсумовування за змінною [math]j[/math] сталою [math](\overline{y_i} - \overline{y})^2[/math] рівнозначне помноженню на [math]n[/math], тобто [math]\sum_{j=1}^n = n[/math], тоді [math]\sum_{j=1}^n \sum_{i=1}^m = (\overline{y_i} - \overline{y})^2 = \sum_{i=1}^m n (\overline{y_i} - \overline{y})^2[/math].

Така сума називається зваженою, оскільки [math]n[/math] у загальному випадку для кожного [math]i[/math] може бути різними.

При використанні дисперсійного аналізу запишемо останні формули через вихідні значення [math]y_{ij}[/math]: [math]\sum \sum (y_{ij} - \overline{y})^2 = \sum \sum y^2_{ij} + \sum \sum \overline{y^2} + 2 \sum \sum y_{ij} \overline{y} =[/math] [math]\sum \sum y_{ij}^2 + m n \overline{y^2} - 2 m n y^2 = \sum \sum y^2_{ij} - m n \overline{y^2} =[/math] [math]\sum \sum y_{ij}^2 - \frac{\mathrm mn}{\mathrm m^2 n^2}\, (\sum \sum y_{ij})^2 = \sum_{j=1}^n \sum_{i=1}^m y^2_{ij} - \frac{\mathrm 1}{\mathrm mn}\, (\sum \sum y_{ij})^2[/math]; [math]\sum \sum (\overline{y_i} - \overline{y})^2 - \sum^n \sum^m \overline{y^2_i} + \sum^n \sum^m \overline{y^2} - 2\sum^n \sum^m \overline{y_i} \overline{y} =[/math] [math]\sum^n \sum^m y^2_i + \frac{\mathrm mn}{\mathrm m^2 n^2}\, (\sum \sum y_{ij})^2 - 2 m \overline{y} n \overline{y} =[/math] [math]\sum^2 n \frac{\mathrm 1}{\mathrm n^2}\, (\sum^n y_{ij})^2 + \frac{\mathrm 1}{\mathrm mn}\, (\sum \sum y_{ij})^2 - 2 \frac{\mathrm 1}{\mathrm mn}\, (\sum \sum y_{ij})^2 =[/math] [math]= \frac{\mathrm 1}{\mathrm n}\, \sum^m (\sum^n y_{ij})^2 - \frac{\mathrm 1}{\mathrm mn}\, (\sum \sum y_{ij})^2[/math];

[math]\sum \sum (y_{ij} - \overline{y_i})^2 = \sum \sum y^2_{ij} + \sum \sum \overline{y^2_i} - 2 \sum \sum y_{ij} \overline{y_i} =[/math] [math]\sum^m \sum^n y^2_{ij} + n\sum^m y^2_i - 2\sum^m \sum^n y_{ij} \frac{\mathrm 1}{\mathrm n}\, \sum^n y_{ij} =[/math] [math]\sum \sum y^2_{ij} +n \sum^m \frac{\mathrm 1}{\mathrm n^2}\, (\sum^n y_{ij})^2 - 2\sum^m \frac{\mathrm 1}{\mathrm n}\, (\sum^n y_{ij})^2 =[/math] [math]\sum \sum y^2_{ij} - \frac{\mathrm 1}{\mathrm n}\, \sum^m (\sum^n y_{ij})^2[/math].

Ці формули є робочими при одно факторному дисперсійному аналізі. Якщо розглядати дисперсії не функції, а не залежного параметра, а замість [math]y[/math] покласти [math]x[/math], то структура формул зберігатиметься.