Відмінності між версіями «Основні задачі аналізу робочих процесів»
(→Задачі порівняння середнього значення виміряного ряду змінних із заданими значеннями або з середнім іншого ряду змінних) |
(→Задачі порівняння двох і більше дисперсій) |
||
Рядок 25: | Рядок 25: | ||
= Задачі порівняння двох і більше дисперсій = | = Задачі порівняння двох і більше дисперсій = | ||
− | Припустимо, що деякий робочий процес протікає за умов, які | + | Припустимо, що деякий робочий процес протікає за умов, які характеризуються певним середнім значенням основного параметра та мірою розкиду — дисперсією. Нехай потім відбулися зміни в поточних умовах і після цього проведено нові спостереження, які дали значення дисперсії, дещо відмінне від попереднього. Таким чином, порівнюються дві вибіркові дисперсії: одна характеризує процес до змін, інша — після вказаних змін. <br> |
− | Зміна дисперсії могла відбутися не лише через зміни у поточних контрольованих умовах, але й з певних | + | Зміна дисперсії могла відбутися не лише через зміни у поточних контрольованих умовах, але й з певних випадкових причин. Нагадаємо, що розглядувані статистичні характеристики (середнє арифметичне і дисперсія) є за своєю природою випадковими величинами, оскільки випадковими є вихідні значення змінних; отже, відхилення однієї дисперсії від іншої пояснюються як випадковістю, так і відомою причиною.<br> |
− | Згадане порівняння може проводитися не тільки для двох дисперсій, а й для їх довільного числа. При цьому кожна з них обчислюватиметься з різною точністю, | + | Згадане порівняння може проводитися не тільки для двох дисперсій, а й для їх довільного числа. При цьому кожна з них обчислюватиметься з різною точністю, наприклад через різне число спостережень, що слід враховувати.<br> |
= Задачі дослідження емпіричних розподілів = | = Задачі дослідження емпіричних розподілів = | ||
Нехай відомо, що теоретична частота появи певного значення змінної становить Nx, але при конкретному вимірюванні емпірична частота виявилася дещо іншою. Прикладом сказаного є спортлото «6» із 49». Частота (а в межі — ймо¬вірність) появи будь-якого числа в кожному розіграші становить 1/49, тобто теоретичні частоти рівномірно роз¬поділені за всіма значеннями чисел від 1 до 49. Проте опуб¬ліковані відомості про проведені тиражі свідчать про від¬мінність емпіричної частоти від теоретичної, хоча кіль¬кість тиражів спортлото виражається великими числами. Взагалі кажучи, розподіл частот для більшості технологічних змінних підлягає нормальному закону. Однак з різних причин навіть згладжені емпіричні закони розподілу відрізняються від нормального. Тоді виникає потреба в порівнянні утворених емпіричних функ-цій розподілу з його теоретичною моделлю. При цьому треба користуватися об'єктивними критеріями близькос¬ті цих розподілів між собою. <br> | Нехай відомо, що теоретична частота появи певного значення змінної становить Nx, але при конкретному вимірюванні емпірична частота виявилася дещо іншою. Прикладом сказаного є спортлото «6» із 49». Частота (а в межі — ймо¬вірність) появи будь-якого числа в кожному розіграші становить 1/49, тобто теоретичні частоти рівномірно роз¬поділені за всіма значеннями чисел від 1 до 49. Проте опуб¬ліковані відомості про проведені тиражі свідчать про від¬мінність емпіричної частоти від теоретичної, хоча кіль¬кість тиражів спортлото виражається великими числами. Взагалі кажучи, розподіл частот для більшості технологічних змінних підлягає нормальному закону. Однак з різних причин навіть згладжені емпіричні закони розподілу відрізняються від нормального. Тоді виникає потреба в порівнянні утворених емпіричних функ-цій розподілу з його теоретичною моделлю. При цьому треба користуватися об'єктивними критеріями близькос¬ті цих розподілів між собою. <br> | ||
Усі перелічені задачі об'єднує одне спільне для них питання: чи відрізняються порівнювані статистичні харак¬теристики одна від одної більше, ніж можна було б споді¬ватися у зв'язку з їх випадковими коливаннями? Відпові¬ді на такого роду питання дістають за допомогою кри¬теріїв згоди (критеріїв значущості), які ґрунтуються на законах розподілу певних статистичних параметрів. | Усі перелічені задачі об'єднує одне спільне для них питання: чи відрізняються порівнювані статистичні харак¬теристики одна від одної більше, ніж можна було б споді¬ватися у зв'язку з їх випадковими коливаннями? Відпові¬ді на такого роду питання дістають за допомогою кри¬теріїв згоди (критеріїв значущості), які ґрунтуються на законах розподілу певних статистичних параметрів. |
Версія за 18:32, 25 лютого 2012
Прізвище | Чура |
Ім'я | Наталя |
По-батькові | Ярославівна |
Факультет | ФІС |
Група | СНм-51 |
Залікова книжка | СНм-11-256 |
Презентація доповіді на тему Основні задачі аналізу робочих процесів є розміщеною в Репозиторії. |
При дослідженні нових робочих процесів і аналізі діючих виникають задачі, які можна звести до трьох типів:
Задачі порівняння середнього значення виміряного ряду змінних із заданими значеннями або з середнім іншого ряду змінних
Вони виникають, наприклад, при визначенні точності заданого технологічного режиму. Контрольована змінна з певних причин коливається у часі, навіть якщо зусилля оперативного персоналу чи системи автоматичного регулювання спрямовані на її стабілізацію. При цьому витримується певне середнє значення змінної і виникає потреба в оцінці її відхилення від заданого або бажаного рівня.
Задачі порівняння двох і більше дисперсій
Припустимо, що деякий робочий процес протікає за умов, які характеризуються певним середнім значенням основного параметра та мірою розкиду — дисперсією. Нехай потім відбулися зміни в поточних умовах і після цього проведено нові спостереження, які дали значення дисперсії, дещо відмінне від попереднього. Таким чином, порівнюються дві вибіркові дисперсії: одна характеризує процес до змін, інша — після вказаних змін.
Зміна дисперсії могла відбутися не лише через зміни у поточних контрольованих умовах, але й з певних випадкових причин. Нагадаємо, що розглядувані статистичні характеристики (середнє арифметичне і дисперсія) є за своєю природою випадковими величинами, оскільки випадковими є вихідні значення змінних; отже, відхилення однієї дисперсії від іншої пояснюються як випадковістю, так і відомою причиною.
Згадане порівняння може проводитися не тільки для двох дисперсій, а й для їх довільного числа. При цьому кожна з них обчислюватиметься з різною точністю, наприклад через різне число спостережень, що слід враховувати.
Задачі дослідження емпіричних розподілів
Нехай відомо, що теоретична частота появи певного значення змінної становить Nx, але при конкретному вимірюванні емпірична частота виявилася дещо іншою. Прикладом сказаного є спортлото «6» із 49». Частота (а в межі — ймо¬вірність) появи будь-якого числа в кожному розіграші становить 1/49, тобто теоретичні частоти рівномірно роз¬поділені за всіма значеннями чисел від 1 до 49. Проте опуб¬ліковані відомості про проведені тиражі свідчать про від¬мінність емпіричної частоти від теоретичної, хоча кіль¬кість тиражів спортлото виражається великими числами. Взагалі кажучи, розподіл частот для більшості технологічних змінних підлягає нормальному закону. Однак з різних причин навіть згладжені емпіричні закони розподілу відрізняються від нормального. Тоді виникає потреба в порівнянні утворених емпіричних функ-цій розподілу з його теоретичною моделлю. При цьому треба користуватися об'єктивними критеріями близькос¬ті цих розподілів між собою.
Усі перелічені задачі об'єднує одне спільне для них питання: чи відрізняються порівнювані статистичні харак¬теристики одна від одної більше, ніж можна було б споді¬ватися у зв'язку з їх випадковими коливаннями? Відпові¬ді на такого роду питання дістають за допомогою кри¬теріїв згоди (критеріїв значущості), які ґрунтуються на законах розподілу певних статистичних параметрів.