Відмінності між версіями «Сингулярне розкладання»

(SVD і норма матриць)
 
(Не показані 43 проміжні версії цього користувача)
Рядок 16: Рядок 16:
 
|}
 
|}
  
'''Сингулярне розкладання''' (Singular Value Decomposition, SVD) – декомпозиція речовинної матриці з метою її приведення до канонічного виду. Сингулярне розкладання є зручним методом при роботі з матрицями. Воно показує геометричну структуру матриці і дозволяє наочно представити наявні дані. Сингулярне розкладання використовується при вирішенні найрізноманітніших завдань - від наближення методом найменших квадратів і рішення систем рівнянь до стиснення зображень. При цьому використовуються різні властивості сингулярного розкладання, наприклад, здатність показувати ранг матриці, наближати матриці даного рангу. SVD дозволяє обчислювати зворотні і транспонованих матриць великого розміру, що робить його корисним інструментом при вирішенні задач регресійного аналізу.<br>
+
'''Сингулярне розкладання''' (Singular Value Decomposition, SVD) – декомпозиція речовинної матриці з метою її приведення до канонічного виду. Сингулярне розкладання є зручним методом при роботі з матрицями. Воно показує геометричну структуру матриці і дозволяє наочно представити наявні дані. Сингулярне розкладання використовується при вирішенні найрізноманітніших завдань - від наближення методом найменших квадратів і рішення систем рівнянь до стиснення зображень. При цьому використовуються різні властивості сингулярного розкладання, наприклад, здатність показувати ранг матриці, наближати матриці даного рангу. SVD дозволяє обчислювати зворотні і псевдообернених матриць великого розміру, що робить його корисним інструментом при вирішенні задач регресійного аналізу.<br>
 
Для будь-якої речовинної <math>(n\times n)</math> - матриці <math>A</math> існує дві речовинні ортогональні <math>(n\times n)</math> - матриці <math>U</math> і <math>V</math> й такі, що <math>{{U}^{T}}AV</math> - діагональна матриця <math>\Lambda </math>,
 
Для будь-якої речовинної <math>(n\times n)</math> - матриці <math>A</math> існує дві речовинні ортогональні <math>(n\times n)</math> - матриці <math>U</math> і <math>V</math> й такі, що <math>{{U}^{T}}AV</math> - діагональна матриця <math>\Lambda </math>,
 
<center>
 
<center>
Рядок 33: Рядок 33:
 
Наприклад, матриця
 
Наприклад, матриця
 
<center>
 
<center>
<math>A=\left( \begin{matrix}
+
<math>A=\left( \begin{matrix}
 
   0.96 & 1.72  \\
 
   0.96 & 1.72  \\
 
   2.28 & 0.96  \\
 
   2.28 & 0.96  \\
\end{matrix} \right)</math>
+
\end{matrix} \right)</math>
 
</center>
 
</center>
 
має сингулярне розкладання
 
має сингулярне розкладання
 
<center>
 
<center>
<math>A=U\Lambda {{V}^{T}}=\left( \begin{matrix}
+
<math>A=U\Lambda {{V}^{T}}=\left( \begin{matrix}
 
   0.6 & 0.8  \\
 
   0.6 & 0.8  \\
 
   0.8 & -0.6  \\
 
   0.8 & -0.6  \\
\end{matrix} \right)\left( \begin{matrix}
+
\end{matrix} \right)\left( \begin{matrix}
 
   3 & 0  \\
 
   3 & 0  \\
 
   0 & 1  \\
 
   0 & 1  \\
\end{matrix} \right){{\left( \begin{matrix}
+
\end{matrix} \right){{\left( \begin{matrix}
 
   0.8 & -0.6  \\
 
   0.8 & -0.6  \\
 
   0.6 & 0.8  \\
 
   0.6 & 0.8  \\
\end{matrix} \right)}^{T}}</math>
+
\end{matrix} \right)}^{T}}</math>
 
</center>
 
</center>
 
Легко побачити, що матриці <math>U</math> і <math>V</math> ортогональні,
 
Легко побачити, що матриці <math>U</math> і <math>V</math> ортогональні,
<center><math>{{U}^{T}}U=U{{U}^{T}}=I</math>, також <math>~{{V}^{T}}V=V{{V}^{T}}=I</math>,</center>  
+
<center> <math>{{U}^{T}}U=U{{U}^{T}}=I</math>, також <math>~{{V}^{T}}V=V{{V}^{T}}=I</math>,</center>  
 
і сума квадратів значень їх стовпців дорівнює одиниці.
 
і сума квадратів значень їх стовпців дорівнює одиниці.
  
Рядок 108: Рядок 108:
 
Якщо матриця <math>A.</math> ортогональна, довжина вектора <math>A\mathbf{x}</math> залишається незмінною. В іншому випадку можна вирахувати, наскільки матриця <math>A</math> розтянула вектор <math>x</math>.<br>
 
Якщо матриця <math>A.</math> ортогональна, довжина вектора <math>A\mathbf{x}</math> залишається незмінною. В іншому випадку можна вирахувати, наскільки матриця <math>A</math> розтянула вектор <math>x</math>.<br>
 
Евклидова норма матриці є максимальний коефіцієнт розтягування довільного вектора <math>x</math> заданої матрицею <math>A.</math>
 
Евклидова норма матриці є максимальний коефіцієнт розтягування довільного вектора <math>x</math> заданої матрицею <math>A.</math>
 +
<center>
 +
<math>\|A\|_{E}=\underset{\|\mathbf{x}\|=1}{\max }\,\left( \frac{\|A\mathbf{x}\|}{\|\mathbf{x}\|} \right).</math>
 +
</center>
 +
Альтернативою Евклідової нормі є норма Фробеніуса:
 +
<center>
 +
<math>\|A\|_{F}=\sqrt{\sum\limits_{i=1}^{m}{\sum\limits_{j=1}^{n}{a_{ij}^{2}}}}.</math>
 +
</center>
 +
Якщо відомо сингулярне розкладання, то обидві ці норми легко обчислити. Нехай <math>{{\lambda }_{1}},\ldots ,{{\lambda }_{r}}~</math> - сингулярні числа матриці<math>A,</math> відмінні від нуля. Тоді
 +
<center>
 +
<math>\|A\|_{E}={{\lambda }_{1}},</math>
 +
</center>
 +
<center>і</center>
 +
<center>
 +
<math>\|A\|_{F}=\sqrt{\sum\limits_{k=1}^{r}{\lambda _{k}^{2}}}.</math>
 +
</center>
 +
Сингулярні числа матриці <math>A</math> - це довжини осей еліпсоїда, заданого безліччю
 +
<center>
 +
<math>\left. \{A\mathbf{x} \right|\|\mathbf{x}\|_{E}=1\}.</math>
 +
</center>
 +
 +
= Знаходження псевдооберненої матриці за допомогою SVD =
 +
 +
Якщо <math>(m\times n)</math> - матриця <math>A</math> є виродженою або прямокутною, то оберненої матриці <math>{{A}^{-1}}</math> для неї не існує. Однак для <math>A</math> може бути знайдена псевдообернена матриця <math>{{A}^{+}}</math> - така матриця, для якої виконуються умови
 +
<center>
 +
<math>\begin{array}
 +
  {{{A}^{+}}A={{I}_{n}},  \\
 +
  A{{A}^{+}}={{I}_{m}},  \\
 +
  {{A}^{+}}A{{A}^{+}}={{A}^{+}},  \\
 +
  A{{A}^{+}}A=A.  \\
 +
}\end{array}</math>
 +
</center>
 +
Нехай знайдено розкладання матриці виду
 +
<center>
 +
<math>A=U\Lambda {{V}^{T}},</math>
 +
</center>
 +
де <math>\Lambda =\text{diag}({{\lambda }_{1}},...,{{\lambda }_{r}}),~r=\min (m,n)~</math> і <math>{{U}^{T}}U={{I}_{m}},V{{V}^{T}}={{I}_{n}}.</math> Тоді матриця <math>{{A}^{+}}={{V}^{T}}{{\Lambda }^{-1}}U</math> є для матриці <math>A</math> псевдооберненою. Дійсно, <math>{{A}^{+}}A=V{{\Lambda }^{-1}}{{U}^{T}}U\Lambda {{V}^{T}}={{I}_{n}},~A{{A}^{+}}=U\Lambda {{V}^{T}}V{{\Lambda }^{-1}}{{U}^{T}}={{I}_{m}}.</math>
 +
 +
= Метод найменших квадратів і число обумовленості =
 +
Задача найменших квадратів ставиться наступним чином. Дано дійсна <math>(m\times n)-</math>матриця <math>A</math> і дійсний <math>(m)-</math>вектор <math>Y.</math> Потрібно знайти дійсний <math>(n)-</math>вектор<math>\mathbf{w},</math> що мінімізує Евклідову довжину вектора нев'язки,
 +
<center>
 +
<math>\|Y-A\mathbf{w}\|_{E}\to \min.</math>
 +
</center>
 +
Рішення задачі найменших квадратів -
 +
<center>
 +
<math>\mathbf{w}={{({{A}^{T}}A)}^{-1}}({{A}^{T}}Y).</math>
 +
</center>
 +
Для відшукання рішення <math>\mathbf{w}</math> потрібно звернути матрицю <math>{{A}^{T}}A.</math> Для квадратних матриць <math>A</math> число обумовленості <math>\kappa(A)</math> визначено відношенням
 +
<center>
 +
<math>\kappa (A)=\|A\|_{E}\|{{A}^{-1}}\|_{E}.</math>
 +
</center>
 +
З формули евклідової норми матриці і попередньої формули випливає, що число обумовленості матриці є ставлення її першого сингулярного числа до останнього.
 +
<center>
 +
<math>\kappa (A)=\frac{{{\lambda }_{1}}}{{{\lambda }_{n}}}.</math>
 +
</center>
 +
Отже, число обумовленості матриці <math>{{A}^{T}}A</math> є квадрат числа обумовленості матриці <math>A.</math> Це висловлювання справедливо і для вироджених матриць, якщо вважати число обумовленості як відношення, <math>{{\lambda }_{1}}/{{\lambda }_{r}},~r~</math> - ранг матриці <math>A.</math> Тому для отримання звернення, стійкого до малих змін значень матриці <math>A,</math> використовується усічене SVD.
 +
 +
= Усічене SVD при зверненні матриць =
 +
 +
Нехай матриця <math>A</math> представлена ​​у вигляді <math>A=U\Lambda {{V}^{T}}.</math> Тоді при знаходженні оберненої матриці <math>{{A}^{+}}=V{{\Lambda }^{-1}}{{U}^{T}}~</math> в силу ортогональності матриць <math>U</math> і <math>V</math> і в силу умови убування діагональних елементів матриці <math>\Lambda =\text{diag}({{\lambda }_{1}},...,{{\lambda }_{n}}),</math> псевдообернена матриця <math>{{A}^{+}}</math> буде більш залежати від тих елементів матриці
 +
<math>\Lambda,</math> які мають менші значення, ніж від перших сингулярних чисел. Дійсно, якщо матриця <math>A</math> має сингулярні числа <math>{{\lambda }_{1}}\ge {{\lambda }_{2}}\ge ...\ge {{\lambda }_{n}},</math> то сингулярні числа матриці <math>{{A}^{+}}</math> дорівнюють
 +
<center>
 +
<math>{{\Lambda }^{-1}}=\text{diag}(\frac{1}{{{\lambda }_{1}}},...,\frac{1}{{{\lambda }_{n}}})</math>
 +
</center>
 +
<center>і</center>
 +
<center>
 +
<math>\frac{1}{{{\lambda }_{1}}}\le \frac{1}{{{\lambda }_{2}}}...\le \frac{1}{{{\lambda }_{n}}}.</math>
 +
</center>
 +
Вважаючи перший сингулярних чисел визначальними власний простір матриці <math>A,</math> використовуємо при зверненні матриці <math>A</math> перша <math>s</math> сингулярність чисел, <math>s\le \text{rank}A.</math> Тоді обернена матриця <math>{{A}^{+}}</math> буде знайдена як <math>{{A}^{+}}=V\Lambda _{s}^{-1}{{U}^{T}}.</math>
 +
 +
Визначимо усічену псевдообернену матрицю <math>A_{s}^{+}~</math> як
 +
<center>
 +
<math>A_{s}^{+}=V\Lambda _{s}^{-1}{{U}^{T}},</math>
 +
</center>
 +
де <math>\Lambda _{s}^{-1}=\text{diag}(\lambda _{1}^{-1},...,\lambda _{s}^{-1},0,...,0)~</math> -
 +
<math>(n\times n)-</math> діагональна матриця.
  
 
= Список використаних літератури =
 
= Список використаних літератури =

Поточна версія на 10:05, 1 березня 2012

Blue check.png Дана стаття являється неперевіреним навчальним завданням.
Студент: Чура Н. Я.
Викладач: Назаревич О. Б.
Термін до: 18 березня 2012

До вказаного терміну стаття не повинна редагуватися іншими учасниками проекту. Після завершення терміну виконання будь-який учасник може вільно редагувати дану статтю і витерти дане попередження, що вводиться за допомогою шаблону.


Прізвище Чура
Ім'я Наталя
По-батькові Ярославівна
Факультет ФІС
Група СНм-51
Залікова книжка СНм-11-256

Сингулярне розкладання (Singular Value Decomposition, SVD) – декомпозиція речовинної матриці з метою її приведення до канонічного виду. Сингулярне розкладання є зручним методом при роботі з матрицями. Воно показує геометричну структуру матриці і дозволяє наочно представити наявні дані. Сингулярне розкладання використовується при вирішенні найрізноманітніших завдань - від наближення методом найменших квадратів і рішення систем рівнянь до стиснення зображень. При цьому використовуються різні властивості сингулярного розкладання, наприклад, здатність показувати ранг матриці, наближати матриці даного рангу. SVD дозволяє обчислювати зворотні і псевдообернених матриць великого розміру, що робить його корисним інструментом при вирішенні задач регресійного аналізу.
Для будь-якої речовинної [math](n\times n)[/math] - матриці [math]A[/math] існує дві речовинні ортогональні [math](n\times n)[/math] - матриці [math]U[/math] і [math]V[/math] й такі, що [math]{{U}^{T}}AV[/math] - діагональна матриця [math]\Lambda[/math],

[math]{{U}^{T}}AV=\Lambda[/math].

Матриці [math]U[/math] і [math]V[/math] вибираються так, щоб диагональні елементи матриці [math]\Lambda[/math] мали вид

[math]{{\lambda }_{1}}\ge {{\lambda }_{2}}\ge ...\ge {{\lambda }_{r}}\gt {{\lambda }_{r+1}}=...={{\lambda }_{n}}=0[/math],
де [math]~r[/math] - ранг матриці[math]A[/math]. Зокрема, якщо [math]A[/math] невироджена, то
[math]{{\lambda }_{1}}\ge {{\lambda }_{2}}\ge ...\ge {{\lambda }_{n}}\gt 0~[/math].

Індекс [math]r[/math] елемента [math]{{\lambda }_{r}}[/math] є фактична розмірність власного простору матриці [math]A[/math].
Стовпці матриць [math]U[/math] і [math]V[/math] називаються відповідно лівими і правими сингулярними векторами, а значення діагоналі матриці [math]\Lambda[/math] називаються сингулярними числами.
Еквівалентна запис сингулярного розкладання [math]A=U\Lambda {{V}^{T}}[/math].
Наприклад, матриця

[math]A=\left( \begin{matrix}
0.96 & 1.72  \\
2.28 & 0.96  \\
\end{matrix} \right)[/math]

має сингулярне розкладання

[math]A=U\Lambda {{V}^{T}}=\left( \begin{matrix}
0.6 & 0.8  \\
0.8 & -0.6  \\
\end{matrix} \right)\left( \begin{matrix}
3 & 0  \\
0 & 1  \\
\end{matrix} \right){{\left( \begin{matrix}
0.8 & -0.6  \\
0.6 & 0.8  \\
\end{matrix} \right)}^{T}}[/math]

Легко побачити, що матриці [math]U[/math] і [math]V[/math] ортогональні,

[math]{{U}^{T}}U=U{{U}^{T}}=I[/math], також [math]~{{V}^{T}}V=V{{V}^{T}}=I[/math],

і сума квадратів значень їх стовпців дорівнює одиниці.

Геометричний зміст SVD

Нехай матриці [math]A[/math] поставлений у відповідність лінійний оператор. Cінгулярне розкладання можна переформулювати в геометричних термінах. Лінійний оператор, що відображає елементи простору [math]{{R}^{n}}[/math] в себе представимо у вигляді послідовно виконуваних лінійних операторів обертання, розтягування і обертання. Тому компоненти сингулярного розкладання наочно показують геометричні зміни при відображенні лінійним оператором [math]A[/math] безлічі векторів з векторного простору в себе або в векторний простір іншої розмірності.

Простори матриці і SVD

Сингулярне розкладання дозволяє знайти ортогональні базиси різних векторних просторів розкладається матриці

[math]{{A}_{(n\times n)}}={{U}_{(n\times n)}}{{\Lambda }_{(n\times n)}}V_{(n\times n)}^{T}.[/math]

Для прямокутних матриць існує так зване економне уявлення сингулярного розкладання матриці

[math]{{A}_{(m\times n)}}={{U}_{(m\times m)}}{{\Lambda }_{(m\times n)}}V_{(n\times n)}^{T}[/math]

Згідно з цим поданням при [math]m\gt n[/math], діагональна матриця [math]\Lambda[/math] має порожні рядки (їх елементи рівні нулю), а при [math]m\lt n[/math] - порожні стовпці. Тому існує ще одне економне подання

[math]{{A}_{(m\times n)}}={{U}_{(m\times r)}}{{\Lambda }_{(r\times r)}}V_{(r\times n)}^{T},[/math]

в якому [math]r=\min (m,n).[/math] Нуль-простір матриці [math]A[/math] - набір векторів [math]\mathbf{x}[/math], для якого справедливе висловлювання [math]A\mathbf{x}=\mathbf{0}.[/math] Власне простір матриці [math]A[/math] - набір векторів [math]\mathbf{b}[/math], при якому рівняння [math]A\mathbf{x}=\mathbf{b}[/math] має ненульове рішення для [math]\mathbf{x}[/math]. Позначимо [math]{{\mathbf{u}}_{k}}[/math] і [math]{{\mathbf{v}}_{k}}[/math] - стовпці матриць [math]U[/math] і [math]V[/math]. Тоді розкладання [math]A=U\Lambda {{V}^{T}}~[/math] може бути записано у вигляді: [math]A=\sum\limits_{k=1}^{r}{{{A}_{k}}},\text{ }[/math] де [math]~{{A}_{k}}={{\mathbf{u}}_{k}}{{\lambda }_{k}}\mathbf{v}_{k}^{T}.[/math] Якщо сингулярне число [math]{{\lambda }_{k}}=0,[/math] то [math]A{{\mathbf{v}}_{k}}=\mathbf{0}~[/math] і [math]{{\mathbf{v}}_{k}}[/math] знаходиться в нуль-просторі матриці [math]A[/math], а якщо сингулярне число [math]{{\lambda }_{k}}\ne 0,[/math] то вектор [math]{{\mathbf{u}}_{k}}[/math] перебувають у власному просторі матриці [math]A[/math]. Отже, можна сконструювати базиси для різних векторних підпросторів, визначених матрицею [math]A[/math]. Hабір векторів [math]{{\mathbf{v}}_{1}},\ldots ,{{\mathbf{v}}_{k}}[/math] у векторному просторі [math]V~[/math] формує базис для [math]V~[/math], якщо будь-який вектор [math]\mathbf{x}[/math] з [math]V~[/math] можна представити у вигляді лінійної комбінації векторів [math]{{\mathbf{v}}_{1}},\ldots ,{{\mathbf{v}}_{k}}[/math] єдиним способом. Нехай [math]{{V}_{0}}[/math] буде набором тих стовпців [math]{{\mathbf{u}}_{k}},[/math] для яких [math]{{\lambda }_{k}}\ne 0,[/math] а [math]{{V}_{1}}[/math] - всі інші стовпці [math]{{\lambda }_{k}}\ne 0,[/math]. Також, нехай [math]{{U}_{0}}[/math] буде набором стовпців [math]{{\mathbf{u}}_{k}},[/math] для яких [math]{{\lambda }_{k}}\ne 0,[/math] а [math]{{U}_{1}}[/math] - всі інші стовпці [math]{{\mathbf{u}}_{k}},[/math] включаючи і ті, для яких [math]k\gt n.[/math] Тоді, якщо [math]r[/math] - кількість ненульових сингулярних чисел, то [math]r[/math] мається стовпців в наборі [math]{{V}_{0}}[/math] і [math]n-r~[/math] стовпців в наборі [math]{{V}_{1}}[/math] і [math]{{U}_{1}},[/math] а також [math]m-n+r[/math] стовпців в наборі [math]{{U}_{0}}.[/math] Кожен з цих наборів формує базис векторного простору матриці [math]A[/math]:

  • [math]{{V}_{0}}[/math] - Ортонормований базис для ортогонального комплементарного нуль-простору [math]A[/math],
  • [math]{{V}_{1}}[/math] - Ортонормований базис для нуль-простору [math]A[/math],
  • [math]{{U}_{0}}[/math] - Ортонормований базис для власного простору [math]A[/math],
  • [math]{{U}_{1}}[/math] - Ортонормований базис для ортогонального комплементарного нуль-простору [math]A[/math].

SVD і власні числа матриці

Сингулярне розкладання володіє властивістю, яке пов'язує задачу відшукання сингулярного розкладання і завдання відшукання власних векторів. Власний вектор [math]\mathbf{x}[/math] матриці [math]A[/math] - такий вектор, при якому виконується умова [math]A\mathbf{x}=\lambda \mathbf{x},~[/math] число [math]\lambda[/math] називається власним числом. Так як матриці [math]U[/math] і [math]V[/math] ортогональні, то

[math]\begin{matrix}
A{{A}^{T}}=U\Lambda {{V}^{T}}V\Lambda {{U}^{T}}=U{{\Lambda }^{2}}{{U}^{T}},  \\
{{A}^{T}}A=V\Lambda {{U}^{T}}U\Lambda {{V}^{T}}=V{{\Lambda }^{2}}{{V}^{T}}.  \\
\end{matrix}[/math]

Домножуючи обидва вирази справа відповідно на [math]U[/math] і [math]V[/math] отримуємо

[math]\begin{matrix}
A{{A}^{T}}U=U{{\Lambda }^{2}},  \\
{{A}^{T}}AV=V{{\Lambda }^{2}}.  \\
\end{matrix}[/math]

З цього випливає, що стовпці матриці [math]U[/math] є власними векторами матриці [math]A{{A}^{T}},[/math] а квадрати сингулярних чисел [math]\Lambda =\text{diag}({{\lambda }_{1}},...,{{\lambda }_{r}})[/math] - її власними числами. Також стовпці матриці [math]V[/math] є власними векторами матриці [math]{{A}^{T}}A,[/math] а квадрати сингулярних чисел є її власними числами.

SVD і норма матриць

Розглянемо зміну довжини вектора [math]x[/math] до і після його множення зліва на матрицю [math]A.[/math] Евклидова норма вектора визначена як

[math]\|\mathbf{x}\|_{E}^{2}={{\mathbf{x}}^{T}}\mathbf{x}.[/math]

Якщо матриця [math]A.[/math] ортогональна, довжина вектора [math]A\mathbf{x}[/math] залишається незмінною. В іншому випадку можна вирахувати, наскільки матриця [math]A[/math] розтянула вектор [math]x[/math].
Евклидова норма матриці є максимальний коефіцієнт розтягування довільного вектора [math]x[/math] заданої матрицею [math]A.[/math]

[math]\|A\|_{E}=\underset{\|\mathbf{x}\|=1}{\max }\,\left( \frac{\|A\mathbf{x}\|}{\|\mathbf{x}\|} \right).[/math]

Альтернативою Евклідової нормі є норма Фробеніуса:

[math]\|A\|_{F}=\sqrt{\sum\limits_{i=1}^{m}{\sum\limits_{j=1}^{n}{a_{ij}^{2}}}}.[/math]

Якщо відомо сингулярне розкладання, то обидві ці норми легко обчислити. Нехай [math]{{\lambda }_{1}},\ldots ,{{\lambda }_{r}}~[/math] - сингулярні числа матриці[math]A,[/math] відмінні від нуля. Тоді

[math]\|A\|_{E}={{\lambda }_{1}},[/math]
і
[math]\|A\|_{F}=\sqrt{\sum\limits_{k=1}^{r}{\lambda _{k}^{2}}}.[/math]

Сингулярні числа матриці [math]A[/math] - це довжини осей еліпсоїда, заданого безліччю

[math]\left. \{A\mathbf{x} \right|\|\mathbf{x}\|_{E}=1\}.[/math]

Знаходження псевдооберненої матриці за допомогою SVD

Якщо [math](m\times n)[/math] - матриця [math]A[/math] є виродженою або прямокутною, то оберненої матриці [math]{{A}^{-1}}[/math] для неї не існує. Однак для [math]A[/math] може бути знайдена псевдообернена матриця [math]{{A}^{+}}[/math] - така матриця, для якої виконуються умови

[math]\begin{array}
{{{A}^{+}}A={{I}_{n}},  \\
A{{A}^{+}}={{I}_{m}},  \\
{{A}^{+}}A{{A}^{+}}={{A}^{+}},  \\
A{{A}^{+}}A=A.  \\
}\end{array}[/math]

Нехай знайдено розкладання матриці виду

[math]A=U\Lambda {{V}^{T}},[/math]

де [math]\Lambda =\text{diag}({{\lambda }_{1}},...,{{\lambda }_{r}}),~r=\min (m,n)~[/math] і [math]{{U}^{T}}U={{I}_{m}},V{{V}^{T}}={{I}_{n}}.[/math] Тоді матриця [math]{{A}^{+}}={{V}^{T}}{{\Lambda }^{-1}}U[/math] є для матриці [math]A[/math] псевдооберненою. Дійсно, [math]{{A}^{+}}A=V{{\Lambda }^{-1}}{{U}^{T}}U\Lambda {{V}^{T}}={{I}_{n}},~A{{A}^{+}}=U\Lambda {{V}^{T}}V{{\Lambda }^{-1}}{{U}^{T}}={{I}_{m}}.[/math]

Метод найменших квадратів і число обумовленості

Задача найменших квадратів ставиться наступним чином. Дано дійсна [math](m\times n)-[/math]матриця [math]A[/math] і дійсний [math](m)-[/math]вектор [math]Y.[/math] Потрібно знайти дійсний [math](n)-[/math]вектор[math]\mathbf{w},[/math] що мінімізує Евклідову довжину вектора нев'язки,

[math]\|Y-A\mathbf{w}\|_{E}\to \min.[/math]

Рішення задачі найменших квадратів -

[math]\mathbf{w}={{({{A}^{T}}A)}^{-1}}({{A}^{T}}Y).[/math]

Для відшукання рішення [math]\mathbf{w}[/math] потрібно звернути матрицю [math]{{A}^{T}}A.[/math] Для квадратних матриць [math]A[/math] число обумовленості [math]\kappa(A)[/math] визначено відношенням

[math]\kappa (A)=\|A\|_{E}\|{{A}^{-1}}\|_{E}.[/math]

З формули евклідової норми матриці і попередньої формули випливає, що число обумовленості матриці є ставлення її першого сингулярного числа до останнього.

[math]\kappa (A)=\frac{{{\lambda }_{1}}}{{{\lambda }_{n}}}.[/math]

Отже, число обумовленості матриці [math]{{A}^{T}}A[/math] є квадрат числа обумовленості матриці [math]A.[/math] Це висловлювання справедливо і для вироджених матриць, якщо вважати число обумовленості як відношення, [math]{{\lambda }_{1}}/{{\lambda }_{r}},~r~[/math] - ранг матриці [math]A.[/math] Тому для отримання звернення, стійкого до малих змін значень матриці [math]A,[/math] використовується усічене SVD.

Усічене SVD при зверненні матриць

Нехай матриця [math]A[/math] представлена ​​у вигляді [math]A=U\Lambda {{V}^{T}}.[/math] Тоді при знаходженні оберненої матриці [math]{{A}^{+}}=V{{\Lambda }^{-1}}{{U}^{T}}~[/math] в силу ортогональності матриць [math]U[/math] і [math]V[/math] і в силу умови убування діагональних елементів матриці [math]\Lambda =\text{diag}({{\lambda }_{1}},...,{{\lambda }_{n}}),[/math] псевдообернена матриця [math]{{A}^{+}}[/math] буде більш залежати від тих елементів матриці [math]\Lambda,[/math] які мають менші значення, ніж від перших сингулярних чисел. Дійсно, якщо матриця [math]A[/math] має сингулярні числа [math]{{\lambda }_{1}}\ge {{\lambda }_{2}}\ge ...\ge {{\lambda }_{n}},[/math] то сингулярні числа матриці [math]{{A}^{+}}[/math] дорівнюють

[math]{{\Lambda }^{-1}}=\text{diag}(\frac{1}{{{\lambda }_{1}}},...,\frac{1}{{{\lambda }_{n}}})[/math]
і
[math]\frac{1}{{{\lambda }_{1}}}\le \frac{1}{{{\lambda }_{2}}}...\le \frac{1}{{{\lambda }_{n}}}.[/math]

Вважаючи перший сингулярних чисел визначальними власний простір матриці [math]A,[/math] використовуємо при зверненні матриці [math]A[/math] перша [math]s[/math] сингулярність чисел, [math]s\le \text{rank}A.[/math] Тоді обернена матриця [math]{{A}^{+}}[/math] буде знайдена як [math]{{A}^{+}}=V\Lambda _{s}^{-1}{{U}^{T}}.[/math]

Визначимо усічену псевдообернену матрицю [math]A_{s}^{+}~[/math] як

[math]A_{s}^{+}=V\Lambda _{s}^{-1}{{U}^{T}},[/math]

де [math]\Lambda _{s}^{-1}=\text{diag}(\lambda _{1}^{-1},...,\lambda _{s}^{-1},0,...,0)~[/math] - [math](n\times n)-[/math] діагональна матриця.

Список використаних літератури

1. Голуб Дж., Ван-Лоун Ч. Матричные вычисления. М.: Мир. 1999.
2. Деммель Дж. Вычислительная линейная алгебра. URSS. 2001.
3. Логинов Н.В. Сингулярное разложение матриц. М.: МГАПИ. 1996.
4. Стренг Г. Линейная алгебра и ее применения. М.: Мир. 1980.
5. Форсайт Дж., Молер К. Численное решение систем линейных алгебраических уравнений. М.: Мир. 1969.
6. Хорн Р., Джонсон Ч. Матричный анализ. М.: Мир. 1989.
7. Vetterling W. T. Flannery B. P. Numerical Recipies in C: The Art of Scientific Computing. NY: Cambridge University Press. 1999.

Посилання

http://www.prip.tuwien.ac.at/teaching/ws/statistische-mustererkennung/apponly.pdf