Відмінності між версіями «Основні задачі аналізу робочих процесів»

(Задачі порівняння середнього значення виміряного ряду змінних із заданими значеннями або з середнім іншого ряду змінних)
 
(Не показано 8 проміжних версій цього користувача)
Рядок 1: Рядок 1:
 +
{{Завдання|Чура Н. Я.|Назаревич О. Б.|18 березня 2012}}
 
{|border=2 style="float: right; margin-left: 1em; margin-bottom: 0.5em; width: 242px; border: #99B3FF solid 1px"
 
{|border=2 style="float: right; margin-left: 1em; margin-bottom: 0.5em; width: 242px; border: #99B3FF solid 1px"
  
Рядок 14: Рядок 15:
 
| '''Залікова книжка''' || СНм-11-256
 
| '''Залікова книжка''' || СНм-11-256
 
|}
 
|}
 
{{Презентація доповіді |title= Основні задачі аналізу робочих процесів}}
 
  
 
При дослідженні нових робочих процесів і аналізі діючих виникають задачі, які можна звести до трьох типів: <br>
 
При дослідженні нових робочих процесів і аналізі діючих виникають задачі, які можна звести до трьох типів: <br>
Рядок 25: Рядок 24:
 
= Задачі порівняння двох і більше дисперсій =
 
= Задачі порівняння двох і більше дисперсій =
  
Припустимо, що деякий робочий процес протікає за умов, які характе¬ризуються певним середнім значенням основного параметра та мірою розкиду — дисперсією. Нехай потім відбулися зміни в поточних умовах і після цього проведено нові спо¬стереження, які дали значення дисперсії, дещо відмінне від попереднього. Таким чи¬ном, порівнюються дві вибіркові дисперсії: одна характе¬ризує процес до змін, інша — після вказаних змін. <br>
+
Припустимо, що деякий робочий процес протікає за умов, які характеризуються певним середнім значенням основного параметра та мірою розкиду — дисперсією. Нехай потім відбулися зміни в поточних умовах і після цього проведено нові спостереження, які дали значення дисперсії, дещо відмінне від попереднього. Таким чином, порівнюються дві вибіркові дисперсії: одна характеризує процес до змін, інша — після вказаних змін. <br>
Зміна дисперсії могла відбутися не лише через зміни у поточних контрольованих умовах, але й з певних випадко¬вих причин. Нагадаємо, що розглядувані статистичні ха¬рактеристики (середнє арифметичне і дисперсія) є за сво¬єю природою випадковими величинами, оскільки випадко¬вими є вихідні значення змінних; отже, відхилення однієї дисперсії від іншої пояснюються як випадковістю, так і відомою причиною.<br>
+
Зміна дисперсії могла відбутися не лише через зміни у поточних контрольованих умовах, але й з певних випадкових причин. Нагадаємо, що розглядувані статистичні характеристики (середнє арифметичне і дисперсія) є за своєю природою випадковими величинами, оскільки випадковими є вихідні значення змінних; отже, відхилення однієї дисперсії від іншої пояснюються як випадковістю, так і відомою причиною.<br>
Згадане порівняння може проводитися не тільки для двох дисперсій, а й для їх довільного числа. При цьому кожна з них обчислюватиметься з різною точністю, напри¬клад через різне число спостережень, що слід враховувати.<br>
+
Згадане порівняння може проводитися не тільки для двох дисперсій, а й для їх довільного числа. При цьому кожна з них обчислюватиметься з різною точністю, наприклад через різне число спостережень, що слід враховувати.<br>
  
 
= Задачі дослідження емпіричних розподілів =
 
= Задачі дослідження емпіричних розподілів =
Нехай відомо, що теоретична частота появи певного значення змінної становить Nx, але при конкретному вимірюванні емпірична частота виявилася дещо іншою. Прикладом сказаного є спортлото «6» із 49». Частота (а в межі — ймо¬вірність) появи будь-якого числа в кожному розіграші становить 1/49, тобто теоретичні частоти рівномірно роз¬поділені за всіма значеннями чисел від 1 до 49. Проте опуб¬ліковані відомості про проведені тиражі свідчать про від¬мінність емпіричної частоти від теоретичної, хоча кіль¬кість тиражів спортлото виражається великими числами. Взагалі кажучи, розподіл частот для більшості технологічних змінних підлягає нормальному закону. Однак з різних причин навіть згладжені емпіричні закони розподілу відрізняються від нормального. Тоді виникає потреба в порівнянні утворених емпіричних функ-цій розподілу з його теоретичною моделлю. При цьому треба користуватися об'єктивними критеріями близькос¬ті цих розподілів між собою. <br>
+
 
Усі перелічені задачі об'єднує одне спільне для них питання: чи відрізняються порівнювані статистичні харак¬теристики одна від одної більше, ніж можна було б споді¬ватися у зв'язку з їх випадковими коливаннями? Відпові¬ді на такого роду питання дістають за допомогою кри¬теріїв згоди (критеріїв значущості), які ґрунтуються на законах розподілу певних статистичних параметрів.
+
Нехай відомо, що теоретична частота появи певного значення змінної становить <math>N_{x}</math>, але при конкретному вимірюванні емпірична частота виявилася дещо іншою. Прикладом сказаного є спортлото «6» із 49». Частота (а в межі — ймовірність) появи будь-якого числа в кожному розіграші становить 1/49, тобто теоретичні частоти рівномірно розподілені за всіма значеннями чисел від 1 до 49. Проте опубліковані відомості про проведені тиражі свідчать про відмінність емпіричної частоти від теоретичної, хоча кількість тиражів спортлото виражається великими числами. Взагалі кажучи, розподіл частот для більшості технологічних змінних підлягає нормальному закону. Однак з різних причин навіть згладжені емпіричні закони розподілу відрізняються від нормального. Тоді виникає потреба в порівнянні утворених емпіричних функцій розподілу з його теоретичною моделлю. При цьому треба користуватися об'єктивними критеріями близькості цих розподілів між собою. <br>
 +
Усі перелічені задачі об'єднує одне спільне для них питання: чи відрізняються порівнювані статистичні характеристики одна від одної більше, ніж можна було б сподіватися у зв'язку з їх випадковими коливаннями? Відповіді на такого роду питання дістають за допомогою критеріїв згоди (критеріїв значущості), які ґрунтуються на законах розподілу певних статистичних параметрів.
 +
 
 +
= Список використаної літератури =
 +
 
 +
#Математичне планування експериментів в АПК / В. О. Аністратенко, В. Г. Федоров.-К.:Вища школа,1993.-374с.
 +
 
 +
[[Категорія:Планування експерименту]]

Поточна версія на 18:07, 28 лютого 2012

Blue check.png Дана стаття являється неперевіреним навчальним завданням.
Студент: Чура Н. Я.
Викладач: Назаревич О. Б.
Термін до: 18 березня 2012

До вказаного терміну стаття не повинна редагуватися іншими учасниками проекту. Після завершення терміну виконання будь-який учасник може вільно редагувати дану статтю і витерти дане попередження, що вводиться за допомогою шаблону.


Прізвище Чура
Ім'я Наталя
По-батькові Ярославівна
Факультет ФІС
Група СНм-51
Залікова книжка СНм-11-256

При дослідженні нових робочих процесів і аналізі діючих виникають задачі, які можна звести до трьох типів:

Задачі порівняння середнього значення виміряного ряду змінних із заданими значеннями або з середнім іншого ряду змінних

Вони виникають, наприклад, при визначенні точності заданого технологічного режиму. Контрольована змінна з певних причин коливається у часі, навіть якщо зусилля оперативного персоналу чи системи автоматичного регулювання спрямовані на її стабілізацію. При цьому витримується певне середнє значення змінної і виникає потреба в оцінці її відхилення від заданого або бажаного рівня.

Задачі порівняння двох і більше дисперсій

Припустимо, що деякий робочий процес протікає за умов, які характеризуються певним середнім значенням основного параметра та мірою розкиду — дисперсією. Нехай потім відбулися зміни в поточних умовах і після цього проведено нові спостереження, які дали значення дисперсії, дещо відмінне від попереднього. Таким чином, порівнюються дві вибіркові дисперсії: одна характеризує процес до змін, інша — після вказаних змін.
Зміна дисперсії могла відбутися не лише через зміни у поточних контрольованих умовах, але й з певних випадкових причин. Нагадаємо, що розглядувані статистичні характеристики (середнє арифметичне і дисперсія) є за своєю природою випадковими величинами, оскільки випадковими є вихідні значення змінних; отже, відхилення однієї дисперсії від іншої пояснюються як випадковістю, так і відомою причиною.
Згадане порівняння може проводитися не тільки для двох дисперсій, а й для їх довільного числа. При цьому кожна з них обчислюватиметься з різною точністю, наприклад через різне число спостережень, що слід враховувати.

Задачі дослідження емпіричних розподілів

Нехай відомо, що теоретична частота появи певного значення змінної становить [math]N_{x}[/math], але при конкретному вимірюванні емпірична частота виявилася дещо іншою. Прикладом сказаного є спортлото «6» із 49». Частота (а в межі — ймовірність) появи будь-якого числа в кожному розіграші становить 1/49, тобто теоретичні частоти рівномірно розподілені за всіма значеннями чисел від 1 до 49. Проте опубліковані відомості про проведені тиражі свідчать про відмінність емпіричної частоти від теоретичної, хоча кількість тиражів спортлото виражається великими числами. Взагалі кажучи, розподіл частот для більшості технологічних змінних підлягає нормальному закону. Однак з різних причин навіть згладжені емпіричні закони розподілу відрізняються від нормального. Тоді виникає потреба в порівнянні утворених емпіричних функцій розподілу з його теоретичною моделлю. При цьому треба користуватися об'єктивними критеріями близькості цих розподілів між собою.
Усі перелічені задачі об'єднує одне спільне для них питання: чи відрізняються порівнювані статистичні характеристики одна від одної більше, ніж можна було б сподіватися у зв'язку з їх випадковими коливаннями? Відповіді на такого роду питання дістають за допомогою критеріїв згоди (критеріїв значущості), які ґрунтуються на законах розподілу певних статистичних параметрів.

Список використаної літератури

  1. Математичне планування експериментів в АПК / В. О. Аністратенко, В. Г. Федоров.-К.:Вища школа,1993.-374с.