Відмінності між версіями «Теорема Коші-Гельмгольца»
Natasha (обговорення • внесок) |
Natasha (обговорення • внесок) |
||
Рядок 33: | Рядок 33: | ||
Вияснимо фізичний зміст кожного із складових в (2.4): | Вияснимо фізичний зміст кожного із складових в (2.4): | ||
- <math>v_x, v_y</math> і <math>v_z</math> - проекції поступальної швидкості центру рідкої частинки; | - <math>v_x, v_y</math> і <math>v_z</math> - проекції поступальної швидкості центру рідкої частинки; | ||
− | - пари останніх складових(<math> | + | - пари останніх складових(<math>w_yz_1, w_zy_1</math> та ін.) – проекції швидкості руху частинок навколо миттєвої осі, що проходить через її центр. Такий обертовий рух частинки в гідромеханіці називають вихровим, а проекції кутової швидкості обертання <math>w_x, w_y, w_z</math> - компонентами вихoру (ротора). Із векторного аналізу і формул (2.5) випливає, що кутова швидкість |
− | + | ||
+ | [[Файл:A6.gif]] | ||
Все описане тут і становить суть теореми Коші-Гельмгольца: швидкість будь-якої рідкої частки складається з швидкості полюса, швидкості обертання навколо миттєвої осі, що проходить через цей полюс, а також швидкості деформаційного руху, що складається з лінійної деформації і деформації зсуву. | Все описане тут і становить суть теореми Коші-Гельмгольца: швидкість будь-якої рідкої частки складається з швидкості полюса, швидкості обертання навколо миттєвої осі, що проходить через цей полюс, а також швидкості деформаційного руху, що складається з лінійної деформації і деформації зсуву. |
Версія за 16:05, 6 червня 2011
З теоретичної механіки відомо, що в загальному випадку рух твердого тіла в кожен момент складається з поступального переміщення полюса і обертання навколо миттєвої осі, що проходить через цей полюс. Рух рідини більш складно. Кожна рідка частка крім поступального переміщення і обертання, зазнає ще й деформації. Для вивчення всіх складових руху розглянемо нескінченно малу рідку частку в довільний момент часу (рис. 1). Позначимо проекції швидкості у точці М(x,y,z) – центрі частинки, прийнятому за полюс, через [math]v_x(x,y,z)[/math] ; [math]v_y(x,y,z)[/math]; [math]v_z(x,y,z)[/math]. Тоді в деякій точці M1 із координатами [math](x+x_1, y+y_1, z+z_1)[/math] на поверхні частинки проекції швидкості можуть бути записані у вигляді
де [math]x_1, y_1[/math] і [math]z_1[/math] в силу малих розмірів частинки являються нескінченно малими величинами
рис. 1 Частинка рідини у різних системах координат
Розкладемо функції швидкостей [math]v_x,v_y,v_z[/math]в ряди Тейлора по степеням [math]x1, y1, z1[/math] в окрузі точки М(x,y,z). Утримуючи члени до першого порядку малости включно, отримаємо
де для скорочення запису, замість [math]v_x(x,y,z)[/math] записано [math]v_x[/math] и т. д. Після нескладних перетворень можна отримати
де
Вияснимо фізичний зміст кожного із складових в (2.4): - [math]v_x, v_y[/math] і [math]v_z[/math] - проекції поступальної швидкості центру рідкої частинки; - пари останніх складових([math]w_yz_1, w_zy_1[/math] та ін.) – проекції швидкості руху частинок навколо миттєвої осі, що проходить через її центр. Такий обертовий рух частинки в гідромеханіці називають вихровим, а проекції кутової швидкості обертання [math]w_x, w_y, w_z[/math] - компонентами вихoру (ротора). Із векторного аналізу і формул (2.5) випливає, що кутова швидкість
Все описане тут і становить суть теореми Коші-Гельмгольца: швидкість будь-якої рідкої частки складається з швидкості полюса, швидкості обертання навколо миттєвої осі, що проходить через цей полюс, а також швидкості деформаційного руху, що складається з лінійної деформації і деформації зсуву.