Відмінності між версіями «Дискретні розподіли»
Рядок 45: | Рядок 45: | ||
− | В основі біноміального закону розподілу лежить загальна схема, названа ім'ям відомого швейцарського вченого математика Якоба Бернуллі. Нехай випадкова величина ''х'' набуває тільки двох значень: ''1'' та ''0'', причому результати кожного випробування не залежать одні від одних. Ця вимога задовольняється при підкиданні правильної монети | + | В основі біноміального закону розподілу лежить загальна схема, названа ім'ям відомого швейцарського вченого математика Якоба Бернуллі. Нехай випадкова величина ''х'' набуває тільки двох значень: ''1'' та ''0'', причому результати кожного випробування не залежать одні від одних. Ця вимога задовольняється при підкиданні правильної монети. Така схема випробувань лежить в основі широкого кола експериментів, наслідки яких належать двом взаємовиключаючим класам, а розподіл змінної ''х'', яка може набувати тільки двох значень (''х = 1'' з імовірністю ''р'' або ''х = 0'' з імовірністю ''q = 1 – р''), називається розподілом Бернуллі. |
Якщо нас цікавить, яка імовірність сприятливого наслідку в серії з ''N'' дослідів, то треба врахувати, що число цих наслідків ''k'' може набувати будь-яких цілих значень від ''0'' до ''N'', а число протилежних наслідків дорівнює ''N – k''. При цьому імовірність ''р (N, k)'' обчислюється за біноміальним законом | Якщо нас цікавить, яка імовірність сприятливого наслідку в серії з ''N'' дослідів, то треба врахувати, що число цих наслідків ''k'' може набувати будь-яких цілих значень від ''0'' до ''N'', а число протилежних наслідків дорівнює ''N – k''. При цьому імовірність ''р (N, k)'' обчислюється за біноміальним законом | ||
Рядок 73: | Рядок 73: | ||
Для обчислення ''р(N, k)'', починаючи з ''р(N, 0)'', можна користуватися також рекурентною формулою: | Для обчислення ''р(N, k)'', починаючи з ''р(N, 0)'', можна користуватися також рекурентною формулою: | ||
<center><math>\frac{p(N,k)}{p(N,k-1)}=\frac{(N-k+1)p}{kq}.</math></center> | <center><math>\frac{p(N,k)}{p(N,k-1)}=\frac{(N-k+1)p}{kq}.</math></center> | ||
+ | |||
+ | |||
+ | == Дискретний рівномірний розподіл == | ||
+ | Нехай маємо урну, в якій є n однакових кульок, пронумерованих числами 1,2,...,n. Яка ймовірність вийняти з урни кульку з номером m? | ||
+ | Очевидно, що шукана ймовірність | ||
+ | <center><math>P(m)=\frac{1}{n},\quad{m=1,2,...,n.}\qquad{(1.1)}</math></center> | ||
== Список використаних джерел == | == Список використаних джерел == | ||
1. Математичне планування експериментів в АПК / В. О. Аністратенко, В. Г. Федоров.-К.:Вища школа,1993.-374с. | 1. Математичне планування експериментів в АПК / В. О. Аністратенко, В. Г. Федоров.-К.:Вища школа,1993.-374с. |
Версія за 19:08, 4 березня 2011
{{{img}}} | ||
Імя | Тарас | |
Прізвище | Івасюк | |
По-батькові | Анатолійович | |
Факультет | ФІС | |
Група | СН-51 | |
Залікова книжка | СН-10-055 |
Зміст
Вступ
Нормальний закон розподілу стосується неперервних випадкових величин. Для дискретних величин він може застосовуватися лише за певних умов, зокрема при великому числі випробувань. Разом з тим число дискретних величин часто не може бути великим (обсяг вибірки невеликий), а крім того, на імовірність тієї чи іншої події (наслідку) впливають деякі обмеження.
Біномінальний розподіл
У робочих процесах АПК, особливо біологічних, найчастіше користуються біноміальним розподілом дискретних величин. Він виникає тоді, коли при будь-якому випробуванні у серії має відбутися одна подія або у деякому розумінні їй протилежна. Вивчення цього розподілу розпочалося з відомої гри в підкидування монет, тому появу однієї події часто називають сприятливим наслідком або успіхом (наприклад, гербом зверху на монеті, що впала, для гравця, який поставив на герб), а протилежної — несприятливим наслідком або невдачею. Ці терміни зберігають свій прямий смисл, наприклад при випробуванні нового препарату на тваринах з можливими наслідками виживає—не виживає.
В основі біноміального закону розподілу лежить загальна схема, названа ім'ям відомого швейцарського вченого математика Якоба Бернуллі. Нехай випадкова величина х набуває тільки двох значень: 1 та 0, причому результати кожного випробування не залежать одні від одних. Ця вимога задовольняється при підкиданні правильної монети. Така схема випробувань лежить в основі широкого кола експериментів, наслідки яких належать двом взаємовиключаючим класам, а розподіл змінної х, яка може набувати тільки двох значень (х = 1 з імовірністю р або х = 0 з імовірністю q = 1 – р), називається розподілом Бернуллі.
Якщо нас цікавить, яка імовірність сприятливого наслідку в серії з N дослідів, то треба врахувати, що число цих наслідків k може набувати будь-яких цілих значень від 0 до N, а число протилежних наслідків дорівнює N – k. При цьому імовірність р (N, k) обчислюється за біноміальним законом
де [math]C_N^k=\frac{N!}{k!(N-k)!}[/math] - біноміальний коефіцієнт.
Параметри N та р повністю визначають біноміальний розподіл.
На рисунку 1 зображено полігони p(N,k) для N=20 та п'яти значень p.
Звідси випливає, що біноміальний розподіл є симетричним тілбки при p=q=0,5. При цьому рівноймовірність наслідківє найчастішою в робочих процесах. При обчисленні теоретичного біноміального розподілу з відомими N та р використовують ту обставину, що р(N, k) є членами в розкладанні бінома Ньютона:
Біноміальні коефіцієнти Сn визначають за допомогою трикутника Паскаля, в якому вони займають рядок з номером N, наприклад для N в межах першого десятка:
Для обчислення р(N, k), починаючи з р(N, 0), можна користуватися також рекурентною формулою:
Дискретний рівномірний розподіл
Нехай маємо урну, в якій є n однакових кульок, пронумерованих числами 1,2,...,n. Яка ймовірність вийняти з урни кульку з номером m? Очевидно, що шукана ймовірність
Список використаних джерел
1. Математичне планування експериментів в АПК / В. О. Аністратенко, В. Г. Федоров.-К.:Вища школа,1993.-374с.