Відмінності між версіями «Сила опору середовища»

Рядок 22: Рядок 22:
 
         V – швидкість руху частинки, м/с;
 
         V – швидкість руху частинки, м/с;
 
         p – густина газу, кг/м3.
 
         p – густина газу, кг/м3.
  У  випадку  кульовоїго тіла: % MathType!MTEF!2!1!+-
+
  У  випадку  кульовоїго тіла: <math>% MathType!MTEF!2!1!+-
 
% feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
 
% feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
 
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
 
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
Рядок 30: Рядок 30:
 
% da9maalaaabaGaeqiWdaNaamizamaaCaaaleqabaGaaGOmaaaaaOqa
 
% da9maalaaabaGaeqiWdaNaamizamaaCaaaleqabaGaaGOmaaaaaOqa
 
% aiaaisdaaaaaaa!3C3C!
 
% aiaaisdaaaaaaa!3C3C!
$S = \frac{{\pi {d^2}}}{4}$
+
$S = \frac{{\pi {d^2}}}{4}$</math>
 
де  dч – діаметр частинки, (м).
 
де  dч – діаметр частинки, (м).
Отримуємо рівняння: % MathType!MTEF!2!1!+-
+
Отримуємо рівняння: <math>% MathType!MTEF!2!1!+-
 
% feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
 
% feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
 
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
 
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
Рядок 41: Рядок 41:
 
% aaaaaOqaaiaaiIdaaaGaamOvamaaCaaaleqabaGaaGOmaaaakiaadc
 
% aaaaaOqaaiaaiIdaaaGaamOvamaaCaaaleqabaGaaGOmaaaakiaadc
 
% haaaa!40B9!
 
% haaaa!40B9!
$F = \xi \frac{{\pi {d^2}}}{8}{V^2}p$
+
$F = \xi \frac{{\pi {d^2}}}{8}{V^2}p$</math>
  
 
[[Файл:123.png]]
 
[[Файл:123.png]]

Версія за 13:01, 16 листопада 2015

Коваль Віталій КАс-31


Визначення

Сила опору середовища — сила, що діє на тіло, яке рухається в рідині або газі і обумовлюється дією сили в'язкості і сили лобового опору. Сумарну силу, яка діє на тіло, часто позначають як силу опору середовища. Вона залежить від швидкості руху тіл, їх форми і розмірів. Проекція сили опору середовища на напрям переміщення — величина від'ємна.


Розрахунок

Сила опору, що діє на тіло при його русі може бути вира­жена рівнянням: [math]F = \xi \cdot S \cdot \frac{{{V^2}p}}{2}[/math]

де      ξ– коефіцієнт опору середовища;
        S – площа перерізу частинки, перпендикулярного направленню  руху,   м2;
        V – швидкість руху частинки, м/с;
        p – густина газу, кг/м3.
У  випадку  кульовоїго тіла: [math]S = \frac{{\pi {d^2}}}{4}[/math]

де dч – діаметр частинки, (м). Отримуємо рівняння: [math]F = \xi \frac{{\pi {d^2}}}{8}{V^2}p[/math]

123.png