Відмінності між версіями «Test»

Рядок 6: Рядок 6:
 
   \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}
 
   \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}
 
  </math>
 
  </math>
 +
 +
<tex>
 +
  \operatorname{erfc}(x) =
 +
  \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt =
 +
  \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}
 +
</tex>
  
  

Версія за 20:53, 3 лютого 2013

Тестуємо формули...

[math]\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}[/math]

<tex>

 \operatorname{erfc}(x) =
 \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt =
 \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}
</tex>


[math]x^2[/math]

<tex> x^2 </tex>