Відмінності між версіями «Критерій Фішера»

(Посилання)
(Опис критерію)
 
(Не показані 20 проміжних версій ще одного користувача)
Рядок 2: Рядок 2:
 
{{Студент | Name=Володимир | Surname=Шостак | FatherNAme=Михайлович |Faculti=ФІС | Group=СН-51 | Zalbook=СН-11-222}}
 
{{Студент | Name=Володимир | Surname=Шостак | FatherNAme=Михайлович |Faculti=ФІС | Group=СН-51 | Zalbook=СН-11-222}}
  
'''Критерій Фішера''' применяется для проверки равенства [[Дисперсия случайной величины|дисперсий]] двух выборок.  
+
'''Критерій Фішера''' застосовується для перевірки рівності [[Дисперсій випадкової величини|дисперсій]] двох вибірок.  
Его относят к ''критериям рассеяния''.
+
Його відносять до ''критеріїв розсіювання''.
  
При проверке гипотезы положения (гипотезы о равенстве средних значений в двух выборках) с использованием [[критерий Стьюдента|критерия Стьюдента]] имеет смысл предварительно проверить гипотезу о равенстве дисперсий. Если она верна, то для сравнения средних можно воспользоваться более [[мощность критерия|мощным]] критерием.  
+
При перевірці гіпотези положення (гіпотези про рівність середніх значень у двох вибірках) з використанням [[критерію Стьюдента|критерію Стьюдента]] має сенс заздалегідь перевірити гіпотезу про рівність дисперсій. Якщо вона вірна, то для порівняння середніх можна скористатися більш [[потужним критерієм|потужнім]] критерієм.  
  
В [[регрессионный анализ|регрессионном анализе]] критерий Фишера позволяет оценивать значимость линейных регрессионных моделей.
+
У [[регресійному аналізі|регресійному аналізі]] критерій Фішера дозволяє оцінювати значимість лінійних регресійних моделей.
В частности, он используется в [[шаговая регрессия|шаговой регрессии]] для проверки целесообразности включения или исключения независимых переменных (признаков) в регрессионную модель.  
+
Зокрема, він використовується в [[крокової регресії|крокової регресії]] для перевірки доцільності включення або виключення незалежних змінних (ознак) у регресійну модель.  
  
В [[Дисперсионный анализ|дисперсионном анализе]] критерий Фишера позволяет оценивать значимость факторов и их взаимодействия.
+
У [[Дисперсійному аналізі|дисперсійному аналізі]] критерій Фішера  дозволяє оцінювати значимість факторів і їх взаємодії.
 
+
Критерій Фішера заснований на додаткових припущеннях про незалежність і нормальності вибірок даних.  
Критерий Фишера основан на дополнительных предположениях о независимости и нормальности выборок данных.  
+
Перед його застосуванням рекомендується виконати [[Критерії нормальності|перевірку нормальності]].
Перед его применением рекомендуется выполнить [[Критерии нормальности|проверку нормальности]].
 
  
 
==Приклади задач==
 
==Приклади задач==
Рядок 19: Рядок 18:
 
==Опис критерію==
 
==Опис критерію==
  
Задані дві [[вибірки|вибірки]] <tex>x^n=(x_1,\ldots,x_n),\; x_i \in \mathbb{R};\;\;
+
Задані дві [[вибірки|вибірки]] <math>x^n=(x_1,\ldots,x_n),\; x_i \in \mathbb{R};\;\;
y^m = (y_1,\ldots,y_m),\; y_i \in \mathbb{R}</tex>.  
+
y^m = (y_1,\ldots,y_m),\; y_i \in \mathbb{R}</math>.  
  
Обозначим через
+
Позначим через
<tex>\sigma_1^2</tex> и <tex>\sigma_2^2</tex> [[Дисперсия случайной величины|дисперсии]] выборок <tex>x^n</tex> и <tex>y^m</tex>, <tex>s_1^2</tex> и <tex>s_2^2</tex> — выборочные оценки дисперсий <tex>\sigma_1^2</tex> и <tex>\sigma_2^2</tex>:
+
<math>\sigma_1^2</math> і <math>\sigma_2^2</math> [[Дисперсія випадкової величини|дисперсії]] вибірок <math>x^n</math> і <math>y^m</math>, <math>s_1^2</math> и <math>s_2^2</math> — вибіркові оцінки дисперсій <math>\sigma_1^2</math> і <math>\sigma_2^2</math>:
::<tex>s_1^2=\frac{1}{n-1}\sum_{i=1}^n {(x_i-\overline{x})}^2</tex>;
+
::<math>s_1^2=\frac{1}{n-1}\sum_{i=1}^n {(x_i-\overline{x})}^2</math>;
::<tex>s_2^2=\frac{1}{m-1}\sum_{i=1}^m {(y_i-\overline{y})}^2</tex>,
+
::<math>s_2^2=\frac{1}{m-1}\sum_{i=1}^m {(y_i-\overline{y})}^2</math>,
где
+
де
::<tex>\overline{x}=\frac{1}{n}\sum_{i=1}^n {x_i};\;\; \overline{y}=\frac{1}{m}\sum_{i=1}^m {y_i}</tex> —  выборочные средние выборок <tex>x^n</tex> и <tex>y^m</tex>.
+
::<math>\overline{x}=\frac{1}{n}\sum_{i=1}^n {x_i};\;\; \overline{y}=\frac{1}{m}\sum_{i=1}^m {y_i}</math> —  вибіркові средніх вибірок <math>x^n</math> і <math>y^m</math>.
  
'''Дополнительное предположение''': выборки <tex>x^n</tex> и <tex>y^m</tex> являются [[Нормальное распределение|нормальными]].
+
'''Додаткове припущення''': вибірки <math>x^n</math> і <math>y^m</math> є [[Нормальне розподілення|нормальними]].
Критерий Фишера чувствителен к нарушению предположения о нормальности.  
+
Критерій Фішера чутливий до порушення припущення про нормальність.  
  
'''[[Нулевая гипотеза]]''' <tex>H_0:\; \sigma_1^2=\sigma_2^2</tex>
+
'''Нульова гіпотеза''' <math>H_0:\; \sigma_1^2=\sigma_2^2</math>
  
'''Статистика критерия Фишера''':
+
'''Статистика критерію Фішера''':
::<tex>F=\frac{s_1^2}{s_2^2}</tex>  
+
::<math>F=\frac{s_1^2}{s_2^2}</math>  
имеет [[распределение Фишера]] с <tex>n-1</tex> и <tex>m-1</tex> степенями свободы.
+
має [[росподіл Фішера]] з <math>n-1</math> і <math>m-1</math> степенями свободи.
Обычно в числителе ставится большая из двух сравниваемых дисперсий.
+
Звичайно в чисельнику ставиться більша із двох порівнювальних дисперсій.
Тогда [[критическая область критерия|критической областью критерия]] является правый хвост распределения Фишера,  
+
Одже [[критична область критерію|критичною областью критерия]] є правий хвіст розподілу Фішера,  
что соотвествует альтернативной гипотезе <tex>H_1'</tex>.
+
що відповідає альтернативній гіпотезі <math>H_1'</math>.
  
'''Критерий''' (при [[уровень значимости|уровне значимости]] <tex>\alpha</tex>):
+
'''Критерій''' (при [[рівні значущості|рівні значущості]] <math>\alpha</math>):
  
*против альтернативы <tex>H_1:\; \sigma_1^2\neq\sigma_2^2</tex>
+
*проти альтернативи <math>H_1:\; \sigma_1^2\neq\sigma_2^2</math>
::если <tex>F<F_{\alpha/2}(n-1,m-1)</tex> или <tex>F>F_{1-\alpha/2}(n-1,m-1)</tex>, то нулевая гипотеза <tex>H_0</tex> отвергается в пользу альтернативы <tex>H_1</tex>.
+
::якщо <math>F<F_{\alpha/2}(n-1,m-1)</math> або <math>F>F_{1-\alpha/2}(n-1,m-1)</math>, то нульова гіпотеза <math>H_0</math> відкидається на користь альтернативи <math>H_1</math>.
  
*против альтернативы <tex>H_1':\; \sigma_1^2 > \sigma_2^2</tex>
+
*проти альтернативи <math>H_1':\; \sigma_1^2 > \sigma_2^2</math>
::если <tex>F>F_{1-\alpha}(n-1,m-1)</tex>, то нулевая гипотеза <tex>H_0</tex> отвергается в пользу альтернативы <tex>H_1'</tex>;
+
::якщо <math>F>F_{1-\alpha}(n-1,m-1)</math>, то нульова гіпотеза <math>H_0</math> відкидається на користь альтернативи <math>H_1'</math>;
  
где <tex>F_{\alpha}(n-1,m-1)</tex> есть <tex>\alpha</tex>-[[квантиль]] распределения Фишера с <tex>n-1</tex> и <tex>m-1</tex> степенями свободы.
+
де <math>F_{\alpha}(n-1,m-1)</math> є <math>\alpha</math>-[[квантиль]] розподілу Фішера з <math>n-1</math> і <math>m-1</math> степенями свободи.
  
 
==Література==
 
==Література==
Рядок 56: Рядок 55:
  
 
== Дивитись. також ==  
 
== Дивитись. також ==  
* [[Критерий Стьюдента]]
+
* [[Критерій Стьюдента]]
* [[Проверка статистических гипотез]]
+
* [[Перевірка статистичних гіпотез]]
* [[Статистика (функция выборки)]]
+
* [[Статистика (функція вибірки)]]
* [[Нормальный дисперсионный анализ]]
+
* [[Нормальний дисперсійний аналіз]]
  
 
== Ссилки ==  
 
== Ссилки ==  
Рядок 65: Рядок 64:
 
* [http://ru.wikipedia.org/wiki/Критерий_Фишера Критерий Фишера] (Википедия).
 
* [http://ru.wikipedia.org/wiki/Критерий_Фишера Критерий Фишера] (Википедия).
  
==Посилання==
 
<p>[http://www.machinelearning.ru/wiki/index.php/Критерій_Фішера Критерій Фішера]</p>
 
 
[[Категорія:Планування експерименту]]
 
[[Категорія:Планування експерименту]]
  
 
==Посилання==
 
==Посилання==

Поточна версія на 12:18, 2 березня 2012

Blue check.png Дана стаття являється неперевіреним навчальним завданням.
Студент: Шостак В.М.
Викладач: Назаревич О. Б.
Термін до: 10 березня 2012

До вказаного терміну стаття не повинна редагуватися іншими учасниками проекту. Після завершення терміну виконання будь-який учасник може вільно редагувати дану статтю і витерти дане попередження, що вводиться за допомогою шаблону.


{{{img}}}
Імя Володимир
Прізвище Шостак
По-батькові Михайлович
Факультет ФІС
Група СН-51
Залікова книжка СН-11-222


Критерій Фішера застосовується для перевірки рівності дисперсій двох вибірок. Його відносять до критеріїв розсіювання.

При перевірці гіпотези положення (гіпотези про рівність середніх значень у двох вибірках) з використанням критерію Стьюдента має сенс заздалегідь перевірити гіпотезу про рівність дисперсій. Якщо вона вірна, то для порівняння середніх можна скористатися більш потужнім критерієм.

У регресійному аналізі критерій Фішера дозволяє оцінювати значимість лінійних регресійних моделей. Зокрема, він використовується в крокової регресії для перевірки доцільності включення або виключення незалежних змінних (ознак) у регресійну модель.

У дисперсійному аналізі критерій Фішера дозволяє оцінювати значимість факторів і їх взаємодії. Критерій Фішера заснований на додаткових припущеннях про незалежність і нормальності вибірок даних. Перед його застосуванням рекомендується виконати перевірку нормальності.

Приклади задач

Опис критерію

Задані дві вибірки [math]x^n=(x_1,\ldots,x_n),\; x_i \in \mathbb{R};\;\; y^m = (y_1,\ldots,y_m),\; y_i \in \mathbb{R}[/math].

Позначим через [math]\sigma_1^2[/math] і [math]\sigma_2^2[/math] дисперсії вибірок [math]x^n[/math] і [math]y^m[/math], [math]s_1^2[/math] и [math]s_2^2[/math] — вибіркові оцінки дисперсій [math]\sigma_1^2[/math] і [math]\sigma_2^2[/math]:

[math]s_1^2=\frac{1}{n-1}\sum_{i=1}^n {(x_i-\overline{x})}^2[/math];
[math]s_2^2=\frac{1}{m-1}\sum_{i=1}^m {(y_i-\overline{y})}^2[/math],

де

[math]\overline{x}=\frac{1}{n}\sum_{i=1}^n {x_i};\;\; \overline{y}=\frac{1}{m}\sum_{i=1}^m {y_i}[/math] — вибіркові средніх вибірок [math]x^n[/math] і [math]y^m[/math].

Додаткове припущення: вибірки [math]x^n[/math] і [math]y^m[/math] є нормальними. Критерій Фішера чутливий до порушення припущення про нормальність.

Нульова гіпотеза [math]H_0:\; \sigma_1^2=\sigma_2^2[/math]

Статистика критерію Фішера:

[math]F=\frac{s_1^2}{s_2^2}[/math]

має росподіл Фішера з [math]n-1[/math] і [math]m-1[/math] степенями свободи. Звичайно в чисельнику ставиться більша із двох порівнювальних дисперсій. Одже критичною областью критерия є правий хвіст розподілу Фішера, що відповідає альтернативній гіпотезі [math]H_1'[/math].

Критерій (при рівні значущості [math]\alpha[/math]):

  • проти альтернативи [math]H_1:\; \sigma_1^2\neq\sigma_2^2[/math]
якщо [math]F\lt F_{\alpha/2}(n-1,m-1)[/math] або [math]F\gt F_{1-\alpha/2}(n-1,m-1)[/math], то нульова гіпотеза [math]H_0[/math] відкидається на користь альтернативи [math]H_1[/math].
  • проти альтернативи [math]H_1':\; \sigma_1^2 \gt \sigma_2^2[/math]
якщо [math]F\gt F_{1-\alpha}(n-1,m-1)[/math], то нульова гіпотеза [math]H_0[/math] відкидається на користь альтернативи [math]H_1'[/math];

де [math]F_{\alpha}(n-1,m-1)[/math] є [math]\alpha[/math]-квантиль розподілу Фішера з [math]n-1[/math] і [math]m-1[/math] степенями свободи.

Література

  1. Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — 816 с.

Дивитись. також

Ссилки

Посилання