Відмінності між версіями «Критерій Фішера»
Vova (обговорення • внесок) (→Опис критерію) |
Vova (обговорення • внесок) (→Опис критерію) |
||
Рядок 29: | Рядок 29: | ||
::<math>\overline{x}=\frac{1}{n}\sum_{i=1}^n {x_i};\;\; \overline{y}=\frac{1}{m}\sum_{i=1}^m {y_i}</math> — выборочные средние выборок <math>x^n</math> і <math>y^m</math>. | ::<math>\overline{x}=\frac{1}{n}\sum_{i=1}^n {x_i};\;\; \overline{y}=\frac{1}{m}\sum_{i=1}^m {y_i}</math> — выборочные средние выборок <math>x^n</math> і <math>y^m</math>. | ||
− | '''Дополнительное предположение''': | + | '''Дополнительное предположение''': вибірки <math>x^n</math> і <math>y^m</math> являются [[Нормальное распределение|нормальными]]. |
Критерий Фишера чувствителен к нарушению предположения о нормальности. | Критерий Фишера чувствителен к нарушению предположения о нормальности. | ||
− | '''[[ | + | '''[[Нулова гіпотеза]]''' <math>H_0:\; \sigma_1^2=\sigma_2^2</math> |
− | '''Статистика | + | '''Статистика критерію Фішера''': |
::<math>F=\frac{s_1^2}{s_2^2}</math> | ::<math>F=\frac{s_1^2}{s_2^2}</math> | ||
− | + | має [[росподіл Фішера]] з <math>n-1</math> и <math>m-1</math> степенями свободи. | |
− | + | Звичайно в чисельнику ставиться більша із двох порівнювальних дисперсій. | |
− | + | Одже [[критична область критерію|критической областью критерия]] является правий хвіст розподілу Фішера, | |
− | + | що соотвествует альтернативній гіпотезі <math>H_1'</math>. | |
− | ''' | + | '''Критерій''' (при [[рівні значущості|рівні значущості]] <math>\alpha</math>): |
− | * | + | *протів альтернативи <math>H_1:\; \sigma_1^2\neq\sigma_2^2</math> |
− | :: | + | ::якщо <math>F<F_{\alpha/2}(n-1,m-1)</math> або <math>F>F_{1-\alpha/2}(n-1,m-1)</math>, то нулова гіпотеза <math>H_0</math> отвергается в пользу альтернативи <math>H_1</math>. |
− | * | + | *протів альтернативи <math>H_1':\; \sigma_1^2 > \sigma_2^2</math> |
::если <math>F>F_{1-\alpha}(n-1,m-1)</math>, то нулевая гипотеза <math>H_0</math> отвергается в пользу альтернативы <math>H_1'</math>; | ::если <math>F>F_{1-\alpha}(n-1,m-1)</math>, то нулевая гипотеза <math>H_0</math> отвергается в пользу альтернативы <math>H_1'</math>; | ||
− | + | де <math>F_{\alpha}(n-1,m-1)</math> є <math>\alpha</math>-[[квантиль]] розподілу Фішера з <math>n-1</math> і <math>m-1</math> степенями свободи. | |
==Література== | ==Література== |
Версія за 10:52, 2 березня 2012
Дана стаття являється неперевіреним навчальним завданням.
До вказаного терміну стаття не повинна редагуватися іншими учасниками проекту. Після завершення терміну виконання будь-який учасник може вільно редагувати дану статтю і витерти дане попередження, що вводиться за допомогою шаблону. |
{{{img}}} | ||
Імя | Володимир | |
Прізвище | Шостак | |
По-батькові | Михайлович | |
Факультет | ФІС | |
Група | СН-51 | |
Залікова книжка | СН-11-222 |
Критерій Фішера применяется для проверки равенства дисперсий двух выборок. Его относят к критериям рассеяния.
При проверке гипотезы положения (гипотезы о равенстве средних значений в двух выборках) с использованием критерия Стьюдента имеет смысл предварительно проверить гипотезу о равенстве дисперсий. Если она верна, то для сравнения средних можно воспользоваться более мощным критерием.
В регрессионном анализе критерий Фишера позволяет оценивать значимость линейных регрессионных моделей. В частности, он используется в шаговой регрессии для проверки целесообразности включения или исключения независимых переменных (признаков) в регрессионную модель.
В дисперсионном анализе критерий Фишера позволяет оценивать значимость факторов и их взаимодействия.
Критерий Фишера основан на дополнительных предположениях о независимости и нормальности выборок данных. Перед его применением рекомендуется выполнить проверку нормальности.
Зміст
Приклади задач
Опис критерію
Задані дві вибірки [math]x^n=(x_1,\ldots,x_n),\; x_i \in \mathbb{R};\;\; y^m = (y_1,\ldots,y_m),\; y_i \in \mathbb{R}[/math].
Позначим через [math]\sigma_1^2[/math] і [math]\sigma_2^2[/math] дисперсії вибірок [math]x^n[/math] і [math]y^m[/math], [math]s_1^2[/math] и [math]s_2^2[/math] — виборочні оцінки дисперсій [math]\sigma_1^2[/math] и [math]\sigma_2^2[/math]:
- [math]s_1^2=\frac{1}{n-1}\sum_{i=1}^n {(x_i-\overline{x})}^2[/math];
- [math]s_2^2=\frac{1}{m-1}\sum_{i=1}^m {(y_i-\overline{y})}^2[/math],
де
- [math]\overline{x}=\frac{1}{n}\sum_{i=1}^n {x_i};\;\; \overline{y}=\frac{1}{m}\sum_{i=1}^m {y_i}[/math] — выборочные средние выборок [math]x^n[/math] і [math]y^m[/math].
Дополнительное предположение: вибірки [math]x^n[/math] і [math]y^m[/math] являются нормальными. Критерий Фишера чувствителен к нарушению предположения о нормальности.
Нулова гіпотеза [math]H_0:\; \sigma_1^2=\sigma_2^2[/math]
Статистика критерію Фішера:
- [math]F=\frac{s_1^2}{s_2^2}[/math]
має росподіл Фішера з [math]n-1[/math] и [math]m-1[/math] степенями свободи. Звичайно в чисельнику ставиться більша із двох порівнювальних дисперсій. Одже критической областью критерия является правий хвіст розподілу Фішера, що соотвествует альтернативній гіпотезі [math]H_1'[/math].
Критерій (при рівні значущості [math]\alpha[/math]):
- протів альтернативи [math]H_1:\; \sigma_1^2\neq\sigma_2^2[/math]
- якщо [math]F\lt F_{\alpha/2}(n-1,m-1)[/math] або [math]F\gt F_{1-\alpha/2}(n-1,m-1)[/math], то нулова гіпотеза [math]H_0[/math] отвергается в пользу альтернативи [math]H_1[/math].
- протів альтернативи [math]H_1':\; \sigma_1^2 \gt \sigma_2^2[/math]
- если [math]F\gt F_{1-\alpha}(n-1,m-1)[/math], то нулевая гипотеза [math]H_0[/math] отвергается в пользу альтернативы [math]H_1'[/math];
де [math]F_{\alpha}(n-1,m-1)[/math] є [math]\alpha[/math]-квантиль розподілу Фішера з [math]n-1[/math] і [math]m-1[/math] степенями свободи.
Література
- Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — 816 с.
Дивитись. також
- Критерий Стьюдента
- Проверка статистических гипотез
- Статистика (функция выборки)
- Нормальный дисперсионный анализ
Ссилки
- Распределение Фишера (Википедия).
- Критерий Фишера (Википедия).