Відмінності між версіями «Критерій узгодженості Пірсона»

(Суть критерію узгодженості Пірсона)
(Суть критерію узгодженості Пірсона)
Рядок 8: Рядок 8:
 
<math>\chi^2\leq \chi^{2}_{1-\alpha,r}</math>
 
<math>\chi^2\leq \chi^{2}_{1-\alpha,r}</math>
  
де<math>\chi^{2}_{1-\alpha,r}</math> квантиль <math>\chi^2</math> рівня <math>1-\alpha</math> з r ступенями вільності то  приймається гіпотеза <math>Н<sub>0</sub></math> , якщо навпаки не виконується, то гіпотеза <math>Н<sub>0</sub></math> відхиляється, а приймається гіпотеза <math>Н<sub>1</sub></math>.
+
де<math>\chi^{2}_{1-\alpha,r}</math> квантиль <math>\chi^2</math> рівня <math>1-\alpha</math> з r ступенями вільності то  приймається гіпотеза <math>Н_0</math> , якщо навпаки не виконується, то гіпотеза <math>Н_0</math> відхиляється, а приймається гіпотеза <math>Н_1</math>.
 
Величина <math>\alpha</math> називається рівнем значущості.
 
Величина <math>\alpha</math> називається рівнем значущості.
  

Версія за 03:31, 1 березня 2012

Blue check.png Дана стаття являється неперевіреним навчальним завданням.
Студент: Борух А. О.
Викладач: Назаревич О. Б.
Термін до: 10 березня 2012

До вказаного терміну стаття не повинна редагуватися іншими учасниками проекту. Після завершення терміну виконання будь-який учасник може вільно редагувати дану статтю і витерти дане попередження, що вводиться за допомогою шаблону.


Критерій узгодженості Пірсона - статистичний критерій згоди, один з найвідоміших критеріїв [math]χ^2[/math]. Використовується для перевірки гіпотези про закон розподілу.

Суть критерію узгодженості Пірсона

Критерій згоди Пірсона полягає в наступному. Якщо виконується нерівність: [math]\chi^2\leq \chi^{2}_{1-\alpha,r}[/math]

де[math]\chi^{2}_{1-\alpha,r}[/math] квантиль [math]\chi^2[/math] рівня [math]1-\alpha[/math] з r ступенями вільності то приймається гіпотеза [math]Н_0[/math] , якщо навпаки не виконується, то гіпотеза [math]Н_0[/math] відхиляється, а приймається гіпотеза [math]Н_1[/math]. Величина [math]\alpha[/math] називається рівнем значущості.

Щільність розподілу

Щільність розподілу [math]\chi^2[/math] має вигляд:

P\chi^2(x)=\left\{ \begin{array}0, x < 0 \\ 1 \over {2^{r\over 2} \Gamma(r \over 2 )}x^{{r\over 2}-1} e^{-{x\over 2}} x \geq 0 \end{array}

де r=m-s-1 - ступені вільності, s - число оцінюваних параметрів гіпотетичного розподілу, Gamma(u)= \int x^{u-1}e^{-x}dx

Джерела

  • Б. Г.Марченко, М.Є.Фриз, Б.Б.Млинко "Методичні вказівки до лабораторних робіт №1-№4 з курсу Обробка сигналів та зображень"