Відмінності між версіями «ПЕ2010:Виступ на семінарі:проць:твоя тема»

Рядок 32: Рядок 32:
 
Чотириполюсник складається з двох простих схем:
 
Чотириполюсник складається з двох простих схем:
  
1.детектора на діоді <math>Д</math> з вихідним резистором <math>{{R}_{1}}</math>.
+
1.детектора на діоді 'Д' з вихідним резистором <math>{{R}_{1}}</math>.
  
 
2.інтегруючому ланцюгу <math>{{R}_{2}}C</math>.
 
2.інтегруючому ланцюгу <math>{{R}_{2}}C</math>.
Рядок 46: Рядок 46:
 
<center>Рис.1.3 - Сигнали на виході детектора АВ і виході інтегруючого ланцюга  </center>
 
<center>Рис.1.3 - Сигнали на виході детектора АВ і виході інтегруючого ланцюга  </center>
 
              
 
              
Величина <math>\Delta </math> у свою чергу залежить від характеристик, як детектора, так і інтегруючого ланцюга. У детекторі вона визначатиметься вольтамперной характеристикою (ВАХ) діода Д, а в інтегруючому ланцюзі - співвідношенням між ємкістю конденсатора <math>C</math> і опором <math>{{R}_{2}}</math>.
+
Величина <math>\Delta </math> у свою чергу залежить від характеристик, як детектора, так і інтегруючого ланцюга. У детекторі вона визначатиметься вольтамперной характеристикою (ВАХ) діода 'Д', а в інтегруючому ланцюзі - співвідношенням між ємкістю конденсатора <math>C</math> і опором <math>{{R}_{2}}</math>.
 
              
 
              
 
Як видно з рис.1.3, амплітуда вихідного сигналу детектора, відповідна ВАХ-1, вище, що неминуче приведе до збільшення <math>\Delta </math> в результуючому сигналі. З іншого боку, зменшення ємкості конденсатора інтегруючого ланцюга також наводить до збільшення. При моделюванні схеми неспівпадання між розрахунковими і реальними сигналами вимагає внесення коректування до характеристик, що задаються в моделі.
 
Як видно з рис.1.3, амплітуда вихідного сигналу детектора, відповідна ВАХ-1, вище, що неминуче приведе до збільшення <math>\Delta </math> в результуючому сигналі. З іншого боку, зменшення ємкості конденсатора інтегруючого ланцюга також наводить до збільшення. При моделюванні схеми неспівпадання між розрахунковими і реальними сигналами вимагає внесення коректування до характеристик, що задаються в моделі.

Версія за 17:49, 12 березня 2010

Blue check.png Дана стаття являється неперевіреним навчальним завданням.
Студент: Проць.В.Г.
Викладач: Назаревич О.Б.
Термін до: 28 лютого 2010

До вказаного терміну стаття не повинна редагуватися іншими учасниками проекту. Після завершення терміну виконання будь-який учасник може вільно редагувати дану статтю і витерти дане попередження, що вводиться за допомогою шаблону.



Одним з головних завдань експерименту є здобуття і перевірка математичної моделі об'єкту, взаємозв'язку, що описує в кількісній формі, між вхідними і вихідними параметрами об'єкту. Вхідні параметри, які можуть бути змінені, називають чинниками. Для кожного чинника до виміру встановлюється область визначення, яка може бути безперервною і дискретною. Часто безперервна область визначення штучно дискретизує. У теорії планерування експерименту об'єкт досліджень прийнято представляти у вигляді «чорного ящика», а його математична модель описує функціональні зв'язки між вхідними і вихідними параметрами. Головними вимогами, що пред'являються до математичних моделей об'єктів є зручність математичного використання і інтерпретується моделі. Крім того, завжди мають бути позначені межі застосовності моделі. Якщо ці вимоги не виконуються, то при використанні і експериментальній перевірці моделей неминуче виникають методичні погрішності, і погрішності адекватності, які будуть розглянуті в наступній главі.

Можна виділити наступні завдання перевірки моделей (рис.1.1):

1.Побудувати «чорний ящик», який буде потрібним чином відгукуватися на задану вхідну дію.

2.Маючи «чорний ящик», знаючи вхідні і вихідні сигнали, отримати (змоделювати) його вміст.

1.1.png
Рис.1.1 - Модель чорного ящика

Суть процесу моделювання можна пояснити на прикладі аналізу електронної схеми, в результаті якого будуть отримані певні вихідні сигнали. Можна перевірити модель, зібравши експериментальну схему і знявши реальні вихідні сигнали. При цьому неминучі розбіжності між сигналами модельними і реальними. Аби з'ясувати причини розбіжності, необхідні експерименти з окремими елементами схеми. Необхідне коректування моделі може бути виконане таким чином:

1.Перевірка розбіжностей — експериментальна перевірка характеристик всіх елементів і їх порівняння з модельними.

2.Виправлення характеристик окремих елементів у вихідній моделі.

3.Зіставлення отриманих залежностей з експериментальними (початковими). Таким чином, побудова і перевірка моделі, адекватно електронної схеми, що описує роботу, в загальному випадку вимагає дуже великої кількості експериментальних вимірів. Планерування експерименту дозволяє оптимізувати число вимірів.

Наприклад, електронна схема складається з транзисторів, резисторів, конденсаторів і котушок індуктивності. Якщо номінальні значення пасивних електронних елементів (резисторів, конденсаторів і т.д) збігаються з їх реальними значеннями з необхідною точністю, то неспівпадання між модельними і реальними сигналами найчастіше виникає із-за невідповідності реальних робочих характеристик активних елементів (транзисторів, мікросхем і так далі). Тому дослідні схемотехніки піддають перевірці лише окремі вузли схеми, по суті інтуїтивно плануючи експеримент виходячи зі свого досвіду і використовуючи апріорну інформацію. Розглянемо приклад моделювання простого чотириполюсника, що здійснює виділення що огинає (детектування) радіосигналу (рис.1.2).

Чотириполюсник складається з двох простих схем:

1.детектора на діоді 'Д' з вихідним резистором [math]{{R}_{1}}[/math].

2.інтегруючому ланцюгу [math]{{R}_{2}}C[/math].

1.2.png
Рис.1.2 - приклад моделювання простого чотириполюсника

Сигнали на виході детектора АВ і виході інтегруючого ланцюга показані на рис.1.3. Тут криві 1 і 2 відповідають різним вольтамперным характеристикам (ВАХ) діода. Детектор відрізує негативні напівперіоди сигналу, а інтегруючий ланцюг – виділяє ту, що його огинає. Якість виділення що огинає визначатиметься відхиленням [math]\Delta[/math] від «ідеального» сигналу.

1.3.png
Рис.1.3 - Сигнали на виході детектора АВ і виході інтегруючого ланцюга

Величина [math]\Delta[/math] у свою чергу залежить від характеристик, як детектора, так і інтегруючого ланцюга. У детекторі вона визначатиметься вольтамперной характеристикою (ВАХ) діода 'Д', а в інтегруючому ланцюзі - співвідношенням між ємкістю конденсатора [math]C[/math] і опором [math]{{R}_{2}}[/math].

Як видно з рис.1.3, амплітуда вихідного сигналу детектора, відповідна ВАХ-1, вище, що неминуче приведе до збільшення [math]\Delta[/math] в результуючому сигналі. З іншого боку, зменшення ємкості конденсатора інтегруючого ланцюга також наводить до збільшення. При моделюванні схеми неспівпадання між розрахунковими і реальними сигналами вимагає внесення коректування до характеристик, що задаються в моделі.

У загальному випадку чотириполюсник може розглядатися як об'єкт, схема якого показана на рис.1.4. Характеристики окремих елементів схеми (ВАХ діода і величини останніх пасивних елементів) можуть вважатися фіксованими параметрами (керівниками). Залежно від плану експерименту ці параметри можна розглядати і як вхідні (чинники), які задаються дискретно.

1.4.png
Рис.1.4 - загальному вигляд чотириполюсника

Експериментальні виміри прийнято розділяти на три основні види:

1)прямі виміри, при яких безпосередньо реєструються значення вимірюваної величини (наприклад, вимір напруги [math]U[/math] вольтметром);

2)непрямі виміри (наприклад, виміри сили струму [math]I[/math] амперметром, активного опору [math]R[/math] омметром і розрахунок [math]U=RI[/math] );

Тобто непрямі виміри — це здобуття величини [math]y=f({{x}_{1}},{{x}_{2}},...)[/math] по виміряних значеннях [math]{{x}_{1}},{{x}_{2}},...[/math].

3)спільні виміри (наприклад, виміри напруги [math]U[/math] і сили струму [math]I[/math] при різних значеннях[math]I[/math]і побудова результуючої залежності [math]U=U(I)[/math]);

Тобто спільні виміри — це виміри два або декількох неоднойменних величин для побудови залежності між ними. Планерування експерименту передбачає не лише оптимізацію числа вимірів, але і зменшення експериментальних погрішностей. Тому значну частину математичного апарату теорії планерування експерименту складають теорія помилок, теорія вірогідності і математична статистика.