Задача дисперсійного аналізу
Задача дисперсійного аналізу
В будь-якому експерименті середні значення досліджуваних величин змінюються у зв'язку зі зміною основних факторів (кількісних та якісних), що визначають умови досліду, а також і випадкових факторів. Дослідження впливу тих чи інших факторів на мінливість середніх є задачею дисперсійного аналізу.
Дисперсійний аналіз використовує властивість адитивності дисперсії випадкової величини, що обумовлено дією незалежних факторів. В залежності від числа джерел дисперсії розрізняють однофакторний та багатофакторний дисперсійний аналіз. Дисперсійний аналіз особливо ефективний при вивченні кількох факторів. При класичному методі вивчення змінюють тільки один фактор, а решту залишають постійними. При цьому для кожного фактору проводиться своя серія спостережень, що не використовується при вивченні інших факторів. Крім того, при такому методі досліджень не вдається визначити взаємодію факторів при одночасній їх зміні. При дисперсійному аналізі кожне спостереження служить для одночасної оцінки всіх факторів та їх взаємодії.
Дисперсійний аналіз полягає у виділенні і оцінці окремих факторів, що викликають зміну досліджуваної випадкової величини. При цьому проводиться розклад сумарної вибіркової дисперсії на складові, обумовлені незалежними факторами. Кожна з цих складових є оцінкою дисперсії генеральної сукупності. Щоб вирішити, чи дієвий вплив даного фактору, необхідно оцінити значимість відповідної вибіркової дисперсії у порівнянні з дисперсією відтворення, обумовленою випадковими факторами. Перевірка значимості оцінок дисперсії проводять по критерію Фішера. Коли розрахункове значення критерію Фішера виявиться меншим табличного, то вплив досліджуваного фактору немає підстав вважати значимим. Коли ж розрахункове значення критерію Фішера виявиться більшим табличного, то цей фактор впливає на зміни середніх. В подальшому ми вважаємо, що виконуються наступні припущення:
1) випадкові помилки спостережень мають нормальний розподіл;
2) фактори впливають тільки на зміну середніх значень, а дисперсія спостережень залишається постійною.
Фактори, що розглядаються в дисперсійному аналізі, бувають двох родів:
1) з випадковими рівнями та
2) з фіксованими.
В першому випадку мається на увазі, що вибір рівнів проходить з безмежної сукупності можливих рівнів та супроводжується рандомізацією. Якщо рівні вибираються випадковим чином, математична модель експерименту називається модель з випадковими рівнями факторів (випадкова модель). Коли всі рівні фіксовані - модель з фіксованими рівнями факторів. Коли частина факторів розглядається на фіксованих рівнях, рівні решти вибираються випадковим чином - модель змішаного типу.
Дисперсійний аналіз застосовується в різних формах в залежності від структури об'єкту, що досліджується; вибір відповідної форми є однією з головних трудностей в практичному застосуванні аналізу.