Відмінності між версіями «Датчик тиску»

(Класифікація)
(Класифікація)
Рядок 9: Рядок 9:
 
'''Мікроелектронний датчик абсолютного тиску МІДА-ДА-13П'''
 
'''Мікроелектронний датчик абсолютного тиску МІДА-ДА-13П'''
 
   
 
   
''Область застосування:'' загальнопромислові системи контролю і регулювання, в т.ч. атомна електроенергетика
+
*Область застосування: загальнопромислові системи контролю і регулювання, в т.ч. атомна електроенергетика
  
''Робоче середовище'': рідини, гази, неагресивні до титанових сплавів і нержавіючих сталей.
+
*Робоче середовище: рідини, гази, неагресивні до титанових сплавів і нержавіючих сталей.
  
''Діапазон вимірювання'': 0-0,04; 0-0,06; 0-0,10; 0-0,16; 0-0,25; 0-0,4; 0-0,6; 0-1; 0-2,5; 0-4; 0-6.
+
*Діапазон вимірювання: 0-0,04; 0-0,06; 0-0,10; 0-0,16; 0-0,25; 0-0,4; 0-0,6; 0-1; 0-2,5; 0-4; 0-6.
  
 
== Принципи реалізації ==
 
== Принципи реалізації ==

Версія за 16:00, 14 грудня 2012

Датчик тиску - пристрій, фізичні параметри якого змінюються в залежності від тиску вимірюваного середовища (рідини, гази, пари). У датчиках тиск вимірюваного середовища перетворюється в уніфікований пневматичний чи електричний сигнали або цифровий код.

Класифікація

За способом перетворення вимірюваного тиску в вихідний сигнал датчики тиску є:

  • деформаційні — трансформуються в електричний або електромагнітний сигнал за допомогою перетворювачів.
  • електричні — вимірюваний тиск, впливаючи на чутливий елемент змінює його електричні параметри: заряд, ємність або опір, які і є мірою тису.
МІДА-ДА-13П

Мікроелектронний датчик абсолютного тиску МІДА-ДА-13П

  • Область застосування: загальнопромислові системи контролю і регулювання, в т.ч. атомна електроенергетика
  • Робоче середовище: рідини, гази, неагресивні до титанових сплавів і нержавіючих сталей.
  • Діапазон вимірювання: 0-0,04; 0-0,06; 0-0,10; 0-0,16; 0-0,25; 0-0,4; 0-0,6; 0-1; 0-2,5; 0-4; 0-6.

Принципи реалізації

Датчик тиску складається з первинного перетворювача тиску, у склад якого входить чутливий елемент з приймачем тиску, схема вторинної обробки та пристрій виводу, розміщені у корпусі. Основною відмінністю таких приладів є точність реєстрації тиску, яка залежить від принципу перетворення тиску в електричний сигнал: тензометричний, п'єзорезистивних, ємнісний, індуктивний, резонансний, іонізаційний.

Тензометричний метод

Робота чутливих елементів датчиків базується на принципі вимірювання зміни опору тензорезисторів, приклеєних до титанової мембрани в умовах деформації під дією тиску.

Набули поширення дротові і фольгові тензорезистори, що виготовляють із провідників типу манганіну, ніхрому, константану, а також напівпровідникові тензорезистори, що виготовляють із кремнію та германію. Опір тензорезисторів, що виготовляють із провідників, становить 30...500 Ом, а опір напівпровідникових тензорезисторів від 5•10-2...10 кОм.

Удосконалювання технології виготовлення напівпровідникових тензорезисторів створило можливість виготовляти тензорезистори безпосередньо на кристалічному елементі, виконаному із кремнію або сапфіру. Пружні елементи кристалічних матеріалів мають пружні властивості, що наближаються до ідеальних. Кремнієві перетворювачі мають високу часову і температурну стабільність. Для вимірювання тиску чистих неагресивних діелектриків застосовуються вирішення, що юазуються на використанні чутливих елементів або без покриття, або з захистом силіконовим гелем. Для вимірювання тиску агресивних середовищ і у більшості промислових застосуваннях використовується перетворювач тиску в герметичному метало-скляному корпусі, з роздільною діафрагмою з нержавіючої сталі, що передає тиск вимірюваного середовища за допомогою кремнійорганічної рідини.

Класи точності тензорезисторних вимірювальних перетворювачів надлишкового тиску, вакууму та різниці тисків 0,6; 1,0; 1,5.

Діапазони вимірювання:

  • надлишкового тиску — від 0...10-3 до 0...60 МПа;
  • розрідження -1...0 кПа;
  • абсолютного тиску — від 0...2,5 кПа до 0...2,5МПа;
  • різниці тисків — від 0...1 кПа до 0...2,5МПа.

П'єзоелектричний метод

П'єзоелектричні вимірювальні перетворювачі тиску. В основу роботи цих перетворювачів покладене перетворення вимірювального тиску в зусилля за допомогою деформаційного чутливого елемента і наступного перетворення цього зусилля в сигнал вимірювальної інформації п'єзоелектричним перетворювальним елементом. Принцип дії п'єзоелектричного перетворювального елемента заснований на п'єзоелектричному ефекті, який спостерігається в ряді кристалів, таких, як кварц, турисін, титанат барію і ін. Суть п'єзоелектричного ефекту полягає в тому, що якщо кварцові пластини Х-зрізу піддати стиску силою N, то на її поверхні виникнуть заряди різних знаків. Значення заряду Q пов'язане із силою N співвідношенням

[math]Q = k \cdot N[/math],

де k — п'єзоелектрична постійна, котра не залежить від розміру пластини і визначається природою кристалу.

вимірювальні перетворювачі цього типу мають високі динамічні характеристики, що обумовило їхнє широке застосування при контролі тиску в системах зі швидкопротікаючими процесами. Чутливість п'єзоелектричних вимірювальних перетворювачів тиску може бути підвищена шляхом застосування декількох, паралельно включених кварцових пластин і збільшення ефективної площі мембрани.

Верхні межі вимірювання п'єзоелектричних перетворювачів тиску із кварцовими чутливими елементами 2,5…100 МПа. Класи точності 1,5; 2,0. Через витік заряду із кварцових пластин перетворювачі тисків цього типу не використовують для вимірювання статичних тисків.

Ємнісний метод

Ємнісні сенсори використовують метод зміни ємності конденсатора при зміні відстані між обкладками. Відомі керамічні або кремнієві ємнісні сенсори тиску і сенсори, виконані з використанням пружної металевої мембрани. При зміні тиску мембрана з електродом деформується і відбувається зміна ємності. В елементі з кераміки або кремнію, простір між обкладками зазвичай заповнений маслом або іншою органічною рідиною. Недолік - нелінійна залежність ємності від прикладеного тиску.

Резонансний метод

В основі методу лежать хвильові процеси: акустичні або електромагнітні. Це і пояснює високу стабільність датчиків і високі вихідні характеристики приладу.

Частковим прикладом може служити кварцовий резонатор. При прогині мембрани, відбувається деформація кристалу кварцу, підключеного в електричну схему і його поляризація. У результаті зміни тиску частота коливань кристала змінюється. Підібравши параметри резонансного контуру, змінюючи ємність конденсатора або індуктивність котушки, можна домогтися того, що опір кварцу падає до нуля - частоти коливань електричного сигналу і кристала збігаються - настає резонанс.

До недоліків можна віднести індивідуальну характеристику перетворення тиску, значний час відгуку, неможливість проводити вимірювання в агресивних середовищах без втрати точності показів приладу.

Індукційний метод

Індукційний спосіб базується на реєстрації вихрових струмів (струмів Фуко). Чутливий елемент складається з двох котушок, ізольованих між собою металевим екраном. Перетворювач вимірює зміщення мембрани за відсутності механічного контакту. У котушках генерується електричний сигнал змінного струму таким чином, що заряд і розряд котушок відбувається через однакові проміжки часу. При відхиленні мембрани створюється струм у зафіксованій основній котушці, що призводить до зміни індуктивності системи. Зсув характеристик основний котушки дає можливість перетворити тиск у стандартизований сигнал, прямо пропорційний прикладеному тиску.

Перевагою такої системи, є можливість вимірювання низьких надлишкових і диференціальних тисків, досить висока точність і незначна температурна залежність. Однак датчик чутливий до магнітних впливів, що пояснюється наявністю котушок, які при проходженні змінного сигналу створюють магнітне поле.

Іонізаційний метод

В основі лежить принцип реєстрації потоку іонізованих частинок. Аналогом є лампові діоди. Лампа оснащена двома електродами: катодом і анодом, - нагрівачем а також. У деяких лампах останній відсутній, що пов'язано з використанням досконаліших матеріалів для електродів. Корпус лампи виконаний з високоякісного скла.

Перевагою таких ламп є можливість реєструвати низький тиск - аж до глибокого вакууму з високою точністю. Однак слід суворо враховувати, що подібні прилади не можна експлуатувати, якщо тиск у камері близький до атмосферного. Тому подібні перетворювачі необхідно поєднувати з іншими датчиками тиску, наприклад, ємнісними. Крім іншого, іонізаційні лампи повинні оснащуватися додатковими приладами, оскільки залежність сигналу від тиску є логарифмічною.

Прилади

рис.1 Манометр Бурдона

Інструменти, використовувані для вимірювання тиску називаються манометри і вакуумметри.

Манометр - це прилад для вимірювання тиску рідин і газів.

Вакуумметр (вакуум-манометр) — прилад для вимірювання тиску розріджених газів або для вимірювання глибини вакууму: різниці між атмосферним тиском і тиском розрідженого газу. Поширені теплові вакуум-манометри, зокрема з термопарами, дія яких ґрунтується на залежності теплопровідності газу від тиску.

Електронні датчики тиску

Тиск датчик - вимірювальний перетворювач тиску рідини або газу в електричний, пневматичний та іншого вигляду вихідний сигнал. Служить також для виміру розрядок і перепаду тиску. На тиск до 10Мн/м2( 100 кгс/см2 ) і вище. Тиск датчики будують за принципом прямого перетворення вимірюваного тиску в зусилля і потім у вихідний електричний сигнал наприклад п'єзоелектричні датчики, магнітопружні датчики. Для виміру відносно малого тиску, тиск датчики будують з проміжними і крайовими перетворювачами. Проміжними можуть служити рідинні манометричні перетворювачі, пружини мембрани, сильфони і ін. Як крайові застосовують реостатні, індуктивні, ємкісні перетворювачі.

рис.2 Принципова схема датчика тиску компенсаційного типа: а — електричній силовій компенсації; б — пневматичній силовій компенсації. ‎

Існують тиск датчики, що працюють на принципі електричної або пневматичної силової компенсації. Зусилля Р(див рис.2), що створюється вимірюваним тиском на чутливий елемент 1 , через систему важеля 2 врівноважується силовим пристроєм 3 зворотному зв'язку. При зміні тиску керівник елемент 4 індикатора розузгодження 5 відхиляється від свого первинного нульового положення. Сигнал розузгодження, що формується при цьому в індикаторі 5, посилюється в підсилювачі 6 і у вигляді вихідного струму i вих (або тиск Рвих ) поступає в пристрій 3 і на відліковий пристрій 7. Вихідний сигнал змінюється до тих пір, поки що розвивається в пристрої 3 силове протидію не зрівноважить вимірюваний тиск. У момент рівноваги елементи 2 і 4 повертаються в первинне положення. Рпіт — тиск в живлячій мережі. Вимір перепаду тиску здійснюють диференціальним (різницевим), мембранним, сільфоном або рідинним манометричним датчиком.


рис.3 Схема пристрою п'єзоелектричного датчика тиску: p — вимірюваний тиск; 1 — пьезопластіни; 2 — гайка з діелектрика; 3 — електричний вивід; 4 — корпус (службовець другим виводом); 5 — ізолятор; 6 — металевий електрод.‎


П'єзоелектричний датчик - вимірювальний перетворювач механічного зусилля в електричний сигнал; його дія заснована на використанні п'єзоелектричного ефекту (див. рис3 ). Один з варіантів конструкції п'єзоелектричного датчика тиску показаний на рис . Під дією вимірюваного тиску на зовнішній і внутрішній сторонах пари пластин пьезоелектрика виникають електричні заряди, причому сумарна ерс(електрорушійна сила) (між виводом і корпусом) змінюється пропорційно тиску. П'єзоелектричний датчик доцільно застосовувати при вимірі бистрозмінюючого тиску; якщо тиск міняється повільно, то зростає погрішність перетворення із-за «стікання» електричного заряду з пластин на корпус. Включенням додаткового конденсатора паралельно п'єзоелектричного датчика, можна зменшити погрішність виміру, проте при цьому зменшується напруга на виводах датчика. Основні достоїнства п'єзоелектричних датчиків — їх високі динамічні характеристики і здатність сприймати коливання тиску з частотою від десятків гц до десятків Мгц. Застосовуються при тензометричних вимірах, у вагових і сортувальних (по вазі) пристроях, при вимірах вібрацій і деформацій і т.д.


Магнітопружний датчик(магнітострикційний датчик) - вимірювальний перетворювач механічних зусиль (деформацій) або тиску в електричний сигнал. Дія магнітопружного датчика заснована на використанні залежності магнітних характеристик деяких матеріалів (наприклад, пермалою, інвару ) від механічної напруги в них. Робочий елемент магнітопружного датчика — магнітопровід, на якому розміщено одна або декілька обмоток, що включаються в міст вимірник. Магнітопровід магнітопружного датчика укріплюють на поверхні деталі (або споруди) у напрямі зусиль, що діють, або деформацій. Зміни магнітних характеристик, зокрема магнітній проникності матеріалу магнітопровода, виявляються в зміні індуктивності або взаїмоїндуктівності обмоток. Магнітопружний датчик найдоцільніше застосовувати при вимірах малих деформацій (як постійних, так і бистропеременних) в твердих тілах, а також вимірах тиску рідин і газів, коли потрібна висока чутливість вимірів при відносно малої їх точності.


Калібрування