Відмінності між версіями «Використання гідроудару»

Рядок 25: Рядок 25:
 
В обох випадках в стояку виникає часткове розрідження. При наступному пуску насоса вода, що протікає з дуже великою швидкістю, заповнює вакуум і соударяются в трубопроводі з закритим зворотним клапаном і стовпом рідини над ним, викликаючи стрибок тиску і гідравлічний удар. Такий гідравлічний удар здатний викликати утворення тріщин у трубах, зруйнувати трубні з'єднання і пошкодити насос і / або електродвигун.
 
В обох випадках в стояку виникає часткове розрідження. При наступному пуску насоса вода, що протікає з дуже великою швидкістю, заповнює вакуум і соударяются в трубопроводі з закритим зворотним клапаном і стовпом рідини над ним, викликаючи стрибок тиску і гідравлічний удар. Такий гідравлічний удар здатний викликати утворення тріщин у трубах, зруйнувати трубні з'єднання і пошкодити насос і / або електродвигун.
 
Гідроудар може виникати в системах об'ємного гідроприводу, в яких використовується золотниковий гідророзподільник. У момент перекриття золотником одного з каналів, по яких нагнітається рідина, цей канал на короткий час виявляється перекритим, що тягне за собою виникнення явищ, описаних вище.
 
Гідроудар може виникати в системах об'ємного гідроприводу, в яких використовується золотниковий гідророзподільник. У момент перекриття золотником одного з каналів, по яких нагнітається рідина, цей канал на короткий час виявляється перекритим, що тягне за собою виникнення явищ, описаних вище.
 
Фазы развития гидроудара
 
Как же развивается явление гидроудара? Рассмотрим это на самом простом примере — внезапном заполнении жидкостью пустой трубы постоянного сечения, погружённой на некоторую глубину. Один конец этой трубы закрыт жёсткой заглушкой, а другой свободно сообщается с окружающей жидкостью. Кстати, практически то же самое будет, если рассматривать резкое перекрытие установившегося потока в такой же трубе, только там будет отсутствовать первая фаза — заполнение пустой трубы, — а роль заглушки будет играть перекрывшая трубу заслонка.
 
 
Схема возникновения гидравлического удара при заполнении жидкостью пустой трубы.
 
Голубым цветом обозначена внешняя среда с исходным давлением, светло-голубым — область пониженного давления, синим — область повышенного давления (зона гидроудара). Синие стрелки показывают перемещение вещества среды (жидкости), красные — перемещение границы зоны повышенного давления (без существенного перемещения вещества). H — глубина (напор) на входе трубы; h — перепад высот трубы, L — длина трубы от входа до заглушки. Цифрами обозначены фазы развития явления.
 
Таблица 1. Фазы развития гидравлического удара
 
№ фазы Название фазы Описание фазы
 
1 Заполнение трубы Под действием внешнего давления жидкость заполняет трубу, при этом в соответствии с законом Бернулли её давление несколько меньше давления неподвижной среды вне трубы.
 
2 Встреча с препятствием Жёсткая заглушка внезапно останавливает поток, который ударяется в неё. Однако практически вся жидкость в трубе ещё продолжает своё движение вперёд.
 
3 Рост зоны повышенного давления Головная часть потока остановилась и её кинетическая энергия перешла в потенциальную энергию упругой деформации жидкости и стенок трубы, вызвав в этой области повышение давления. Но до «хвоста» потока это воздействие ещё не дошло, и там жидкость продолжает двигаться в прежнем направлении. Граница области повышенного давления (ударная волна) перемещается от заглушки ко входу трубы, при достаточной жёсткости трубы эта скорость практически равна скорости распространения упругих колебаний в среде, т.е. скорости звука в жидкости.
 
4 Максимум повышенного давления Ударная волна достигла входа трубы и вышла в неподвижную среду. Поскольку внешняя среда неподвижна относительно стенок трубы, она уже не добавляет свою кинетическую энергию и не оказывает существенного сопротивления сжатой жидкости в трубе, и та начинает двигаться из зоны повышенного давления наружу. Кроме того, в свободной среде стенки трубы уже не ограничивают и не «фокусируют» ударную волну, так что она распространяется во все стороны, быстро теряя силу. Таким образом, достигнув входа трубы, ударная волна «рассеивается» и «гаснет». Более подробно этот момент рассмотрен ниже.
 
5 Начало обратного движения Поскольку у входа в трубу давление относительно невысоко, сжатая жидкость двигается туда под действием повышенного давления внутри трубы. При этом потенциальная энергия упругой деформации снова превращается в кинетическую энергию, но движение уже направлено в обратную сторону. В результате граница зоны неподвижной жидкости под повышенным давлением перемещается от входа в трубу обратно к заглушке, оставляя у входа зону немного пониженного давления, в которой жидкость движется обратно ко входу трубы. Скорость перемещения этой границы в случае достаточно жёсткой трубы также равна скорости распространения упругих деформаций в среде, т.е. скорости звука в жидкости, однако перепад давления на границе не такой резкий, как при распространении ударной волны — зона границы существенно шире. Причиной этого являются особенности процесса рассеивания ударной волны у входа в трубу на предыдущей фазе.
 
При падении давления вся потенциальная энергия упругой деформации снова переходит в кинетическую энергию жидкости (за вычетом неизбежных потерь, которые могут быть весьма малы), поэтому скорость «разряженной» жидкости почти равна её скорости до остановки, только направлена теперь в сторону входа.
 
6 Окончание сжатия В момент, когда граница зоны пониженного давления достигает заглушки, во всей трубе жидкость снова испытывает пониженное давление и движется обратно ко входу со скоростью, равной скорости потока в трубе в фазе 2.
 
7 Фаза разрежения (отрыва) Двигаясь в сторону входа трубы, жидкость в силу инерции стремится оторваться от заглушки. Поэтому, если гидроудар был достаточно сильным, то возле заглушки образуется зона разрежения, где жидкость отсутствует и давление близко к нулю (именно вакуум, а не атмосферное давление). Однако жидкость, выходящая из трубы, движется не в пустоту, а в среду, представляющую собой ту же жидкость, только неподвижную. Сопротивление этой среды достаточно быстро затормозит движение жидкости к выходу и вместе с зоной разрежения возле заглушки вновь заставит жидкость двигаться от входа внутрь трубы, тем самым повторяя фазу 1 (естественно, уже с меньшей энергией, потери которой, как всегда, неизбежны).
 
 
При слабом гидроударе жидкости не удаётся оторваться от заглушки, однако всё равно давление существенно снижается относительно давления вне трубы (настолько, насколько оно повысилось в фазе сжатия). В этом случае выделяют фазы распространения отрицательной ударной волны (границы зоны с низким давлением) ко входу трубы и её возвращения обратно под действием внешнего давления, однако при сильном гидроударе с отрывом жидкости от заглушки появляется ещё и фаза «замирания». Впрочем, самостоятельное значение этих фаз не очень велико, поэтому все их я объединяю в одну фазу разрежения. Чуть ниже это рассмотрено более подробно.
 

Версія за 12:14, 8 червня 2011

Гідроудар - стрибок тиску у будь-якій системі, яка заповнена рідиною, викликаний вкрай швидкою зміною швидкості потоку цієї рідини за дуже малий проміжок часу. Гідравлічний удар здатний викликати утворення поздовжніх тріщин у трубах, що може призвести до їх розколу, або пошкоджувати інші елементи трубопроводу. Також гідроудари надзвичайно небезпечні і для іншого обладнання, такого як теплообмінники, насоси і посудини, що працюють під тиском. Для запобігання гідроударів, викликаних різкою зміною напрямку потоку робочого середовища, на трубопроводах встановлюються зворотні клапани.

Загальні знання


Явище гідроудару відкрив Н. Е. Жуковский у 1897—1899 0006-010-Aleksandrov-A.D.-Lobachevskij-N.I.-ZHukovskij-N.E.-Leonard-Ejler.jpg

Збільшення тиску при гідравлічному ударі визначається за формулою: [math]D_p = \rho(v_0 - v_1) c\!\,[/math],

де [math]D_p[/math] — збілшення тиску в Н/м³

[math]\rho[/math] — щільність рідини у кг/м³,
[math]v_0[/math] та [math]v_1[/math] — середні швидкості в трубопроводі до та після закриття

средние скорости в трубопроводе до и после закрытия задвижки (запірного клапана) в м/с,

с — швидкість поширення ударної хвилі вздовж трубопроводу.

Жуковський довів, що швидкість поширення ударної хвилі "c" знаходиться в прямо пропорційній залежності від стисливості рідини, величини деформації стінок трубопроводу, визначається модулем пружності матеріалу E, з якого він виконаний, а також від діаметру трубопроводу. Отже, гідравлічний удар не може виникнути в трубопроводі, що містить газ, тому що газ легко стискаємо.

Приклади гідроударів


Найбільш простим прикладом виникнення гідравлічного удару є приклад трубопроводу з постійним натиском і сталим рухом рідини, в якому була різко перекрита засувка або закритий клапан. У свердловинних системах водопостачання гідроудар, як правило, виникає, коли найближчий до насоса зворотний клапан розташований вище статичного рівня води більше, ніж на 9 метрів, або найближчий до насоса зворотний клапан має витік, в той час як розташований вище наступний зворотний клапан тримає тиск. В обох випадках в стояку виникає часткове розрідження. При наступному пуску насоса вода, що протікає з дуже великою швидкістю, заповнює вакуум і соударяются в трубопроводі з закритим зворотним клапаном і стовпом рідини над ним, викликаючи стрибок тиску і гідравлічний удар. Такий гідравлічний удар здатний викликати утворення тріщин у трубах, зруйнувати трубні з'єднання і пошкодити насос і / або електродвигун. Гідроудар може виникати в системах об'ємного гідроприводу, в яких використовується золотниковий гідророзподільник. У момент перекриття золотником одного з каналів, по яких нагнітається рідина, цей канал на короткий час виявляється перекритим, що тягне за собою виникнення явищ, описаних вище.