Відмінності між версіями «Витратоміри»
Dhsus (обговорення • внесок) |
Dhsus (обговорення • внесок) |
||
Рядок 118: | Рядок 118: | ||
===Діафрагми=== | ===Діафрагми=== | ||
Діафрагма представляє собою пластину з отвором, поміщена в потік, стискаючись потоком вимірює перепад тиску через звужуючий пристрій, в якому змінється і швидкість потоку. Є три типи отворів: ексцентричні, сегментарні, концентричні. | Діафрагма представляє собою пластину з отвором, поміщена в потік, стискаючись потоком вимірює перепад тиску через звужуючий пристрій, в якому змінється і швидкість потоку. Є три типи отворів: ексцентричні, сегментарні, концентричні. | ||
− | [[Файл:Blende_eng.png|200px|thumb|right| | + | [[Файл:Blende_eng.png|200px|thumb|right|ISO 5167 Orifice Plate]] |
Версія за 15:17, 1 березня 2011
Вміст
1. Об'єкт вимірювання.
- 1.1 Газ.
- 1.2 Рідина.
2. Механічні витратоміри.
- 2.1 Посудина і секундомір.
- 2.2 Поршневі.
- 2.3 Ротаметри
- 2.4 Турбінні витратоміри.
- 2.5 Метри Woltmann.
- 2.6 Одного потоку вимірювання.
- 2.7 Ролико-лопатеві витратоміри.
- 2.8 Кілька потоків вимірювання.
- 2.9 Колесо Pelton.
- 2.10 Овальні механізми вимірювання.
- 2.11 Дискові витратоміри Nutating.
3. Основані на зміні тиску.
- 3.1 Труби Вентурі.
- 3.2 Діафрагми.
- 3.3 Труби Далла.
- 3.4 Труба Піто.
- 3.5 З декількома отворами і датчиком тиску.
4. Оптичні витратоміри.
5. Відкритого каналу вимірювання витрати.
- 5.1 Протікаючий рівень.
- 5.2 Район / швидкість.
- 5.3 Фарба тестування.
- 5.4 Акустична велосіметріі Доплерівського.
6. Теплові витрати маси.
7. Вихрові витратоміри.
8. Електромагнітні, ультразвукові та Каріолісові витратоміри.
- 8.1 Магнітні витратоміри.
- 8.2 Ультразвукові витратоміри.
- 8.3 Каріолісові витратоміри.
9. Лазерні доплерівські вимірювання витрати.
10. Калібрування.
- 10.1 Сіту калібрування.
- 10.2 Транзитно-часовий метод.
- 10.3 Трасуючий метод розведення.
Об'єкт вимірювання
Обидва гази і рідини можуть бути виміряні в об'ємних або масових витратах, таких як літрів в секунду або кілограми в секунду. Ці виміри можуть бути перетворені між собою, якщо матеріальна щільність відома. Щільність рідини практично не залежить від рідини умовах, однак, це не справа для газу, щільність якого в значній мірі залежить від тиску, температури і в меншій мірі, складу газу.
Коли гази або рідини передається на їх утримання енергії, таких як продажу природного газу, швидкість потоку може бути виражене в термінах потоку енергії, таких, як ГДж/год або куб.м/день. Швидкість потоку енергії об'ємної швидкості потоку помноженої на вміст енергії в одиниці об'єму або масової витрати множиться на утримання енергії на одиницю маси. Де точні енергії доходить до час законним витрати бажано, більшість витратомірів буде використовуватися для обчислення обсягу або витрати маси, який потім доводять до витрати енергії за рахунок використання потоку комп'ютера.
В інженерних контекстах, об'ємна швидкість потоку, як правило позначається даним символом Q, і масова витрата, символом ṁ.
Гази
Гази стискаються і змінюється об'єм при приміщенні під тиском чи в процусі нагріву або охолодження. Об'єму газу на основі єдиного зводу тиску та температури не еквівалентна ж газу в різних умовах. Список літер позначень, "фактична" витрата через метр і "стандарт" або "база" витрата через лічильник за одиницю часу, такі як ФКМ/год (фактичні кубічних метрів на годину), КСКМ/год (Кіло стандартних кубічних метрів у годину), ЛМ/хв(лінійних футів в хвилину), або MSCFD(в тис. стандартних кубічних футів на день).
Гази за масою можуть бути виміряні, не залежно від тиску і температури, з теплової масові витратоміри , Коріоліса витратоміри маси , або Регулятори витрати маси .
Рідина
Для рідин, різних підрозділів використовуються в залежності від програми та промисловості, але можуть включати галонів (США рідини або імперської) в хвилину, літрів в секунду, бушелів на хвилину або, при описі річок, м3/с (кубічних метрів в секунду) або акр футів на день. У океанографії умовна одиниця для вимірювання об'єму перевезень (об'єм води перевозяться поточного наприклад) Свердруп (Зв), еквівалентній 106м3/с.
Механічні витратоміри
Посудина-і-секундомір
Можливо, найпростіший спосіб вимірювання об'ємної витрати є мірою, скільки часу потрібно для заповнення відомого обсягом контейнера. Простий приклад використання ківш відомого об'єму, заповнений рідиною. Секундомір включається, коли починають подавати потік рідини, і зупинився, коли переповнений контейнер. Обсяг поділений на час дає потік. Відро-і-секундомір метод із застосуванням лінійного методу, це означає, що вимірювання не може бути прийнято без переривання нормального потоку.
Поршневі
Тому що вони використовуються для внутрішніх вимірювань витрати, поршневі вимірювачі, також відомий як роторні поршневі або напів-позитивні лічильники, є найбільш поширеними вимірювальних приладів течії у Великобританії і використовуються для майже всіх вимірювань розмірів аж до 40 мм (1 ½ ). Поршневий вимірювач працює за принципом поршнів, які обертаються в камері відомого об'єму. Для кожного обертання, кількість води проходить через поршневу камеру. Через механізм передачі , а іноді і магнітний диск, голка циферблата і відображає покази на циферблаті.
Ротаметри
Змінної області (VA) метра, також звичайно називають ротаметр , складається з конічної трубки, як правило, зроблені зі скла, з поплавцем всередині, який переміщується вгору потоком рідини і вниз під дією сили тяжіння. Як швидкість потоку збільшується, більше в'язка рідина і сила тиску на поплавок призводить до підвищення поки він стає стаціонарним на місці в трубку, що є досить широкою для сил, щоб збалансувати. Поплавки зроблені в самих різних формах, зі сферами і сферичних еліпси є найбільш поширеним. Ротаметри доступні для широкого спектру рідин, але найчастіше використовуються з водою або повітрям. Вони можуть бути зроблені для точного вимірювання потоку до 1% точності.
Турбінний витратомір
Турбінний витратомір (краще описати як осьова турбіна) переводить механічну дію турбіни, що обертається в рідині навколо осі на системі зчитування швидкості потоку (л/хв, л/год, і т.д.). Турбінне колесо знаходиться на шляху потоку рідини. Протікаюча рідина падає на лопасті турбіни, надаючи сили, щоб лезо поверхні і установка ротора обертались. При постійній швидкості обертання була досягнута швидкість пропорційна швидкості рідини.
Турбінні витратоміри використовуються для вимірювання природного газу і рідини ..Турбіни метрів менш точні, ніж переміщення і лічильники при малих швидкостях потоку, але вимірювальний елемент не займає або суворо обмежити весь шлях потоку. Напрямок потоку, як правило,прямує прямо через вимірювач, що дозволяє виміряти більшу витрату та меншу, ніж втрати тиску типу зсуву метрів. Такі вимірювачі використовуються для великих комерційних користувачів, захисту від вогню, і як майстер метрів для системи розподілу води. Фільтри, як правило, повинні бути встановлені в передній частині прилада для захисту вимірювального елемента із гравію щоб не потрапив бруд, які можуть увійти в систему розподілу води. Турбіна витатоміра, як правило, підбирається для 1-1/2 "до 12" або вище розмірів труби. Деталі турбіни звичайно зроблені з бронзи або чавуну. Внутрішні елементи турбіни можуть бути пластикові або нержавіючого металевих сплавів. Вони точні в нормальних робочих умов для 0,2 л / с, однак, значно впливає середовище суміші.
На пожежних витратомірах встановлюють спеціальні турбіни, необхідних для протипожежного захисту. Вони часто затверджених Underwriters Laboratories (UL) або Factory Mutual (FM) для використання в протипожежного захисту.
Пожежний гідрант витратомірів спеціалізованих типів портативних турбін, які прикріплені до пожежного гідранта для вимірювання витрати води з гідранта. Вимірювачі, як правило, зроблені з алюмінію, щоб бути легким у вазі, і, як правило, потужністю. Утиліти часто вимагають від них для вимірювання води, використовуваної в будівництві, басейн заповнення, або там, де постійні витратоміри ще не встановлено.
Woltmann метр
Метр Woltmann включає ротор з гвинтовими лопатями вставлені аксіально в потоці, так само, як у вентилятора в кільцевому обтічнику, його можна розглядати тип турбіни потік. Вони зазвичай називають спіральними вимірювачами, і користуються популярністю у великих розмірах .
Одного потоку вимірювання
Одного метра струменя складається з простого робочого колеса з радіальними лопатками, на який попадає потік. Вони ростуть в популярності у Великобританії у великих розмірах і стали звичайною справою в ЄС .
Paddle колеса метр
Це схоже на один метр потоку, крім того, що робоче колесо мале по відношенню до ширини труби, а також проекти тільки частково в потік, як веслове колесо на річці Міссісіпі.
Кілька потоків вимірювання
Кілька потоків або Multijet метр вимірювання швидкості, який має крильчатку, яка обертається горизонтально на вертикальному валі. Прямий потік рідини попадає на елементи крильчатки в робочому колесі примушуючи його обертатися в певному напрямку пропорційно швидкості потоку. Цей метр роботи механічно аналогічний, методу вимірювання одного потоку, тільки відмінністю є те, що порти прямого потоку потрапляє на робоче колесо в рівній мірі з декількох точок по колу елемента, а не тільки в одній точці, це мінімізує нерівномірний знос робочого колеса і його валу.
Інших мереж колеса
Інших мереж колеса турбіни (краще описати як радіальної турбіни ) переводить механічна дія колеса інших мереж обертового в рідині навколо осі на користувачів систем зчитування швидкості потоку (л/хв, л/хв, і т.д.). Оригінальні колеса інших мереж були використані для вироблення електроенергії і складався з радіальної турбіни, потік з "реакції чашки", який не тільки рухається від сили води, але повертаєя потік в протилежному напрямку, використовуючи це зміна напрямку рідини в подальшому підвищує ефективность турбіни.
Овальна передача вимірювання
Овальний метод вимірювання використовує дві або більше довгасті передачі налаштовані на поворот під прямим кутом один до одного, утворюючи форму Т. Такий засіб вимірювання має дві сторони, які можна назвати і Б. Тут рідина проходить через центр вимірювача, де зуби з двох передач завжди пересікаються. З одного боку вимірювач (), зуби передач перекривають потік рідини, оскільки подовжені передачі на стороні виступають у вимірювальну камеру, а на іншій стороні вимірювача (B), порожнини виконано фіксованого обсягу рідини в вимірювальну камеру. Як рідина штовхає передачу, він обертає їх, дозволяючи рідині у вимірювальній камері на стороні B буде випущений у вихідний порт. Між тим, рідини введення вхідний порт буде загнаний у вимірювальну камеру в сторону, яка в даний час відкрита. Зуби на стороні B будуть закриті від попадання рідини в сорону Б. Цей цикл продовжується до тих пір поки шестерні обертаються і рідини вимірюються через змінні камери вимірювання. Постійні магніти на обертових механізмах можуть передавати сигнал в електричний геркон або перетворювач струму для вимірювання витрат.
Дискові витратоміри Nutating.
Це найбільш часто використовувані системи вимірювань для вимірювання водопостачання. Рідина, частіше вода, входить в одну сторону вимірювача і обертає nutating диск, який встановлений ексцентрично. На диску виникають потім "коливання" або коливається навколо вертикальної осі, так як нижня і верхня частина диска залишатися в контакті з монтажною камерою. Розділ відокремлює вхід і виход камери. Як диск nutates, вона дає пряму вказівку на об'єм рідини, що пройшла через лічильник, як об'ємна витрата передається і реєструється композиція, яка пов'язана з диском. Вона надійна для вимірювання витрати в 1 відсоток.
Основані на зміні тиску
Є кілька типів витратомірів, які покладаються на Принцип Бернуллі , або шляхом вимірювання перепаду тиску у звуженні, або шляхом вимірювання статичних і стагнації тиску для отримання динамічного тиску.
Труба Вентурі
Труба Вентурі звужує потік в деякому роді, і датчики тиску вимірює перепад тиску до і після звужуючого пристрою. Цей метод широко використовується для вимірювання швидкості потоку в передачі газу на трубопроводах. Коефіцієнт витрати вимірювача труби Вентурі в діапазоні від 0,93 до 0,97.
Діафрагми
Діафрагма представляє собою пластину з отвором, поміщена в потік, стискаючись потоком вимірює перепад тиску через звужуючий пристрій, в якому змінється і швидкість потоку. Є три типи отворів: ексцентричні, сегментарні, концентричні.