Відмінності між версіями «Сингулярне розкладання»
(→Список використаних літератури) |
|||
Рядок 102: | Рядок 102: | ||
= Список використаних літератури = | = Список використаних літератури = | ||
− | 1. Голуб Дж., Ван-Лоун Ч. Матричные вычисления. М.: Мир. 1999. | + | 1. Голуб Дж., Ван-Лоун Ч. Матричные вычисления. М.: Мир. 1999.<br> |
− | 2. Деммель Дж. Вычислительная линейная алгебра. URSS. 2001. | + | 2. Деммель Дж. Вычислительная линейная алгебра. URSS. 2001.<br> |
− | 3. Логинов Н.В. Сингулярное разложение матриц. М.: МГАПИ. 1996. | + | 3. Логинов Н.В. Сингулярное разложение матриц. М.: МГАПИ. 1996.<br> |
− | 4. Стренг Г. Линейная алгебра и ее применения. М.: Мир. 1980. | + | 4. Стренг Г. Линейная алгебра и ее применения. М.: Мир. 1980.<br> |
− | 5. Форсайт Дж., Молер К. Численное решение систем линейных алгебраических уравнений. М.: Мир. 1969. | + | 5. Форсайт Дж., Молер К. Численное решение систем линейных алгебраических уравнений. М.: Мир. 1969.<br> |
− | 6. Хорн Р., Джонсон Ч. Матричный анализ. М.: Мир. 1989. | + | 6. Хорн Р., Джонсон Ч. Матричный анализ. М.: Мир. 1989.<br> |
− | 7. Vetterling W. T. Flannery B. P. Numerical Recipies in C: The Art of Scientific Computing. NY: Cambridge University Press. 1999. | + | 7. Vetterling W. T. Flannery B. P. Numerical Recipies in C: The Art of Scientific Computing. NY: Cambridge University Press. 1999.<br> |
= Посилання = | = Посилання = |
Версія за 23:57, 29 лютого 2012
Дана стаття являється неперевіреним навчальним завданням.
До вказаного терміну стаття не повинна редагуватися іншими учасниками проекту. Після завершення терміну виконання будь-який учасник може вільно редагувати дану статтю і витерти дане попередження, що вводиться за допомогою шаблону. |
Прізвище | Чура |
Ім'я | Наталя |
По-батькові | Ярославівна |
Факультет | ФІС |
Група | СНм-51 |
Залікова книжка | СНм-11-256 |
Сингулярне розкладання (Singular Value Decomposition, SVD) – декомпозиція речовинної матриці з метою її приведення до канонічного виду. Сингулярне розкладання є зручним методом при роботі з матрицями. Воно показує геометричну структуру матриці і дозволяє наочно представити наявні дані. Сингулярне розкладання використовується при вирішенні найрізноманітніших завдань - від наближення методом найменших квадратів і рішення систем рівнянь до стиснення зображень. При цьому використовуються різні властивості сингулярного розкладання, наприклад, здатність показувати ранг матриці, наближати матриці даного рангу. SVD дозволяє обчислювати зворотні і транспонованих матриць великого розміру, що робить його корисним інструментом при вирішенні задач регресійного аналізу.
Для будь-якої речовинної [math](n\times n)[/math] - матриці [math]A[/math] існує дві речовинні ортогональні [math](n\times n)[/math] - матриці [math]U[/math] і [math]V[/math] й такі, що [math]{{U}^{T}}AV[/math] - діагональна матриця [math]\Lambda[/math],
[math]{{U}^{T}}AV=\Lambda[/math].
Матриці [math]U[/math] і [math]V[/math] вибираються так, щоб диагональні елементи матриці [math]\Lambda[/math] мали вид
[math]{{\lambda }_{1}}\ge {{\lambda }_{2}}\ge ...\ge {{\lambda }_{r}}\gt {{\lambda }_{r+1}}=...={{\lambda }_{n}}=0[/math],
[math]{{\lambda }_{1}}\ge {{\lambda }_{2}}\ge ...\ge {{\lambda }_{n}}\gt 0~[/math].
Індекс [math]r[/math] елемента [math]{{\lambda }_{r}}[/math] є фактична розмірність власного простору матриці [math]A[/math].
Стовпці матриць [math]U[/math] і [math]V[/math] називаються відповідно лівими і правими сингулярними векторами, а значення діагоналі матриці [math]\Lambda[/math] називаються сингулярними числами.
Еквівалентна запис сингулярного розкладання [math]A=U\Lambda {{V}^{T}}[/math].
Наприклад, матриця
[math]A=\left( \begin{matrix} 0.96 & 1.72 \\ 2.28 & 0.96 \\ \end{matrix} \right)[/math]
має сингулярне розкладання
[math]A=U\Lambda {{V}^{T}}=\left( \begin{matrix} 0.6 & 0.8 \\ 0.8 & -0.6 \\ \end{matrix} \right)\left( \begin{matrix} 3 & 0 \\ 0 & 1 \\ \end{matrix} \right){{\left( \begin{matrix} 0.8 & -0.6 \\ 0.6 & 0.8 \\ \end{matrix} \right)}^{T}}[/math]
Легко побачити, що матриці [math]U[/math] і [math]V[/math] ортогональні,
і сума квадратів значень їх стовпців дорівнює одиниці.
Зміст
Геометричний зміст SVD
Нехай матриці [math]A[/math] поставлений у відповідність лінійний оператор. Cінгулярне розкладання можна переформулювати в геометричних термінах. Лінійний оператор, що відображає елементи простору [math]{{R}^{n}}[/math] в себе представимо у вигляді послідовно виконуваних лінійних операторів обертання, розтягування і обертання. Тому компоненти сингулярного розкладання наочно показують геометричні зміни при відображенні лінійним оператором [math]A[/math] безлічі векторів з векторного простору в себе або в векторний простір іншої розмірності.
Простори матриці і SVD
Сингулярне розкладання дозволяє знайти ортогональні базиси різних векторних просторів розкладається матриці
[math]{{A}_{(n\times n)}}={{U}_{(n\times n)}}{{\Lambda }_{(n\times n)}}V_{(n\times n)}^{T}.[/math]
Для прямокутних матриць існує так зване економне уявлення сингулярного розкладання матриці
[math]{{A}_{(m\times n)}}={{U}_{(m\times m)}}{{\Lambda }_{(m\times n)}}V_{(n\times n)}^{T}[/math]
Згідно з цим поданням при [math]m\gt n[/math], діагональна матриця [math]\Lambda[/math] має порожні рядки (їх елементи рівні нулю), а при [math]m\lt n[/math] - порожні стовпці. Тому існує ще одне економне подання
[math]{{A}_{(m\times n)}}={{U}_{(m\times r)}}{{\Lambda }_{(r\times r)}}V_{(r\times n)}^{T},[/math]
в якому [math]r=\min (m,n).[/math] Нуль-простір матриці [math]A[/math] - набір векторів [math]\mathbf{x}[/math], для якого справедливе висловлювання [math]A\mathbf{x}=\mathbf{0}.[/math] Власне простір матриці [math]A[/math] - набір векторів [math]\mathbf{b}[/math], при якому рівняння [math]A\mathbf{x}=\mathbf{b}[/math] має ненульове рішення для [math]\mathbf{x}[/math]. Позначимо [math]{{\mathbf{u}}_{k}}[/math] і [math]{{\mathbf{v}}_{k}}[/math] - стовпці матриць [math]U[/math] і [math]V[/math]. Тоді розкладання [math]A=U\Lambda {{V}^{T}}~[/math] може бути записано у вигляді: [math]A=\sum\limits_{k=1}^{r}{{{A}_{k}}},\text{ }[/math] де [math]~{{A}_{k}}={{\mathbf{u}}_{k}}{{\lambda }_{k}}\mathbf{v}_{k}^{T}.[/math] Якщо сингулярне число [math]{{\lambda }_{k}}=0,[/math] то [math]A{{\mathbf{v}}_{k}}=\mathbf{0}~[/math] і [math]{{\mathbf{v}}_{k}}[/math] знаходиться в нуль-просторі матриці [math]A[/math], а якщо сингулярне число [math]{{\lambda }_{k}}\ne 0,[/math] то вектор [math]{{\mathbf{u}}_{k}}[/math] перебувають у власному просторі матриці [math]A[/math]. Отже, можна сконструювати базиси для різних векторних підпросторів, визначених матрицею [math]A[/math]. Hабір векторів [math]{{\mathbf{v}}_{1}},\ldots ,{{\mathbf{v}}_{k}}[/math] у векторному просторі [math]V~[/math] формує базис для [math]V~[/math], якщо будь-який вектор [math]\mathbf{x}[/math] з [math]V~[/math] можна представити у вигляді лінійної комбінації векторів [math]{{\mathbf{v}}_{1}},\ldots ,{{\mathbf{v}}_{k}}[/math] єдиним способом. Нехай [math]{{V}_{0}}[/math] буде набором тих стовпців [math]{{\mathbf{u}}_{k}},[/math] для яких [math]{{\lambda }_{k}}\ne 0,[/math] а [math]{{V}_{1}}[/math] - всі інші стовпці [math]{{\lambda }_{k}}\ne 0,[/math]. Також, нехай [math]{{U}_{0}}[/math] буде набором стовпців [math]{{\mathbf{u}}_{k}},[/math] для яких [math]{{\lambda }_{k}}\ne 0,[/math] а [math]{{U}_{1}}[/math] - всі інші стовпці [math]{{\mathbf{u}}_{k}},[/math] включаючи і ті, для яких [math]k\gt n.[/math] Тоді, якщо [math]r[/math] - кількість ненульових сингулярних чисел, то [math]r[/math] мається стовпців в наборі [math]{{V}_{0}}[/math] і [math]n-r~[/math] стовпців в наборі [math]{{V}_{1}}[/math] і [math]{{U}_{1}},[/math] а також [math]m-n+r[/math] стовпців в наборі [math]{{U}_{0}}.[/math] Кожен з цих наборів формує базис векторного простору матриці [math]A[/math]:
- [math]{{V}_{0}}[/math] - Ортонормований базис для ортогонального комплементарного нуль-простору [math]A[/math],
- [math]{{V}_{1}}[/math] - Ортонормований базис для нуль-простору [math]A[/math],
- [math]{{U}_{0}}[/math] - Ортонормований базис для власного простору [math]A[/math],
- [math]{{U}_{1}}[/math] - Ортонормований базис для ортогонального комплементарного нуль-простору [math]A[/math].
SVD і власні числа матриці
Сингулярне розкладання володіє властивістю, яке пов'язує задачу відшукання сингулярного розкладання і завдання відшукання власних векторів. Власний вектор [math]\mathbf{x}[/math] матриці [math]A[/math] - такий вектор, при якому виконується умова [math]A\mathbf{x}=\lambda \mathbf{x},~[/math] число [math]\lambda[/math] називається власним числом. Так як матриці [math]U[/math] і [math]V[/math] ортогональні, то
[math]\begin{matrix} A{{A}^{T}}=U\Lambda {{V}^{T}}V\Lambda {{U}^{T}}=U{{\Lambda }^{2}}{{U}^{T}}, \\ {{A}^{T}}A=V\Lambda {{U}^{T}}U\Lambda {{V}^{T}}=V{{\Lambda }^{2}}{{V}^{T}}. \\ \end{matrix}[/math]
Домножуючи обидва вирази справа відповідно на [math]U[/math] і [math]V[/math] отримуємо
[math]\begin{matrix} A{{A}^{T}}U=U{{\Lambda }^{2}}, \\ {{A}^{T}}AV=V{{\Lambda }^{2}}. \\ \end{matrix}[/math]
З цього випливає, що стовпці матриці [math]U[/math] є власними векторами матриці [math]A{{A}^{T}},[/math] а квадрати сингулярних чисел [math]\Lambda =\text{diag}({{\lambda }_{1}},...,{{\lambda }_{r}})[/math] - її власними числами. Також стовпці матриці [math]V[/math] є власними векторами матриці [math]{{A}^{T}}A,[/math] а квадрати сингулярних чисел є її власними числами.
Список використаних літератури
1. Голуб Дж., Ван-Лоун Ч. Матричные вычисления. М.: Мир. 1999.
2. Деммель Дж. Вычислительная линейная алгебра. URSS. 2001.
3. Логинов Н.В. Сингулярное разложение матриц. М.: МГАПИ. 1996.
4. Стренг Г. Линейная алгебра и ее применения. М.: Мир. 1980.
5. Форсайт Дж., Молер К. Численное решение систем линейных алгебраических уравнений. М.: Мир. 1969.
6. Хорн Р., Джонсон Ч. Матричный анализ. М.: Мир. 1989.
7. Vetterling W. T. Flannery B. P. Numerical Recipies in C: The Art of Scientific Computing. NY: Cambridge University Press. 1999.
Посилання
http://www.prip.tuwien.ac.at/teaching/ws/statistische-mustererkennung/apponly.pdf