Відмінності між версіями «Сингулярне розкладання»
Рядок 23: | Рядок 23: | ||
Матриці <math>U</math> і <math>V</math> вибираються так, щоб диагональні елементи матриці <math>\Lambda </math> мали вид | Матриці <math>U</math> і <math>V</math> вибираються так, щоб диагональні елементи матриці <math>\Lambda </math> мали вид | ||
<center> | <center> | ||
− | <math>{{\lambda }_{1}}\ge {{\lambda }_{2}}\ge ...\ge {{\lambda }_{r}}>{{\lambda }_{r+1}}=...={{\lambda }_{n}}=0</math>, | + | <math>{{\lambda }_{1}}\ge {{\lambda }_{2}}\ge ...\ge {{\lambda }_{r}}>{{\lambda }_{r+1}}=...={{\lambda }_{n}}=0</math>, |
</center> | </center> | ||
де <math>~r</math> - ранг матриці<math>A</math>. Зокрема, якщо <math>A</math> невироджена, то <center> | де <math>~r</math> - ранг матриці<math>A</math>. Зокрема, якщо <math>A</math> невироджена, то <center> | ||
− | <math>{{\lambda }_{1}}\ge {{\lambda }_{2}}\ge ...\ge {{\lambda }_{n}}>0~</math>. | + | <math>{{\lambda }_{1}}\ge {{\lambda }_{2}}\ge ...\ge {{\lambda }_{n}}>0~</math>. |
+ | </center> | ||
+ | Індекс <math>r</math> елемента <math>{{\lambda }_{r}}</math> є фактична розмірність власного простору матриці <math>A</math>.<br> | ||
+ | Стовпці матриць <math>U</math> і <math>V</math> називаються відповідно лівими і правими сингулярними векторами, а значення діагоналі матриці <math>\Lambda </math> називаються сингулярними числами.<br> | ||
+ | Еквівалентна запис сингулярного розкладання <math>A=U\Lambda {{V}^{T}}</math>.<br> | ||
+ | Наприклад, матриця | ||
+ | <center> | ||
+ | <math>A=\left( \begin{matrix} | ||
+ | 0.96 & 1.72 \\ | ||
+ | 2.28 & 0.96 \\ | ||
+ | \end{matrix} \right)</math> | ||
</center> | </center> |
Версія за 22:00, 29 лютого 2012
Дана стаття являється неперевіреним навчальним завданням.
До вказаного терміну стаття не повинна редагуватися іншими учасниками проекту. Після завершення терміну виконання будь-який учасник може вільно редагувати дану статтю і витерти дане попередження, що вводиться за допомогою шаблону. |
Прізвище | Чура |
Ім'я | Наталя |
По-батькові | Ярославівна |
Факультет | ФІС |
Група | СНм-51 |
Залікова книжка | СНм-11-256 |
Сингулярне розкладання (Singular Value Decomposition, SVD) – декомпозиція речовинної матриці з метою її приведення до канонічного виду. Сингулярне розкладання є зручним методом при роботі з матрицями. Воно показує геометричну структуру матриці і дозволяє наочно представити наявні дані. Сингулярне розкладання використовується при вирішенні найрізноманітніших завдань - від наближення методом найменших квадратів і рішення систем рівнянь до стиснення зображень. При цьому використовуються різні властивості сингулярного розкладання, наприклад, здатність показувати ранг матриці, наближати матриці даного рангу. SVD дозволяє обчислювати зворотні і транспонованих матриць великого розміру, що робить його корисним інструментом при вирішенні задач регресійного аналізу.
Для будь-якої речовинної [math](n\times n)[/math] - матриці [math]A[/math] існує дві речовинні ортогональні [math](n\times n)[/math] - матриці [math]U[/math] і [math]V[/math] й такі, що [math]{{U}^{T}}AV[/math] - діагональна матриця [math]\Lambda[/math],
[math]{{U}^{T}}AV=\Lambda[/math].
Матриці [math]U[/math] і [math]V[/math] вибираються так, щоб диагональні елементи матриці [math]\Lambda[/math] мали вид
[math]{{\lambda }_{1}}\ge {{\lambda }_{2}}\ge ...\ge {{\lambda }_{r}}\gt {{\lambda }_{r+1}}=...={{\lambda }_{n}}=0[/math],
[math]{{\lambda }_{1}}\ge {{\lambda }_{2}}\ge ...\ge {{\lambda }_{n}}\gt 0~[/math].
Індекс [math]r[/math] елемента [math]{{\lambda }_{r}}[/math] є фактична розмірність власного простору матриці [math]A[/math].
Стовпці матриць [math]U[/math] і [math]V[/math] називаються відповідно лівими і правими сингулярними векторами, а значення діагоналі матриці [math]\Lambda[/math] називаються сингулярними числами.
Еквівалентна запис сингулярного розкладання [math]A=U\Lambda {{V}^{T}}[/math].
Наприклад, матриця
[math]A=\left( \begin{matrix} 0.96 & 1.72 \\ 2.28 & 0.96 \\ \end{matrix} \right)[/math]